

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEMA	ATICS		9231/13
Paper 1			May/June 2019
			3 hours
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

BLANK PAGE

	•••••						• • • • • • • • • • • • • • • • • • • •		••••
									•••
	•••••								
•••••		•••••	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••
•••••	•••••		•••••	•••••	•••••		•••••	•••••	•••
					,				
	•••••								· • • •
•••••	•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••
	•••••								
••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••
	•••••							•••••	•••
••••••		•••••	••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••
	•••••			•••••	•••••				•••
•••••		•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••
	•••••								
		•••••	•••••	•••••	•••••			•••••	•••
•••••	•••••			•••••				•••••	•••
••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••
	•••••								
•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••

The curve C has polar equation $r^2 = \ln(1 + \theta)$, for $0 \le \theta \le 2\pi$.

2

(i)	Sketch C.	[2]
(ii)	Using the substitution $u = 1 + \theta$, or otherwise, find the area of the region bounded by C are initial line, leaving your answer in an exact form.	nd the [5]
		•••••
		•••••
		•••••
		•••••
		••••••

[.
••••••
•••••

1	(i)	Use the method of diffe	erences to show the	$at \sum_{r=1}^{N} \frac{1}{(3r+1)^r}$	$\frac{1}{3(3r-2)} = \frac{1}{3}$	$-\frac{1}{3(3N+1)}.$	[4]
						•••••	
						•••••	,
				•••••			
				••••••••••••		••••••	
							•••••

		s $N \to \infty$, o	r=N+1 `	, ,	,			
•••••	•••••	•••••	•••••	••••••	•••••	•••••••		
•••••	•••••		•••••	•••••	•••••	•••••		
						•••••		
						•••••		
•••••	•••••	••••••	••••••	••••••	•••••••	•••••••	•••••	· • • • • • • • • • • • • • • • • • • •
•••••	•••••		•••••	•••••		••••••	•••••	
•••••	•••••		•••••	•••••	•••••	•••••		
•••••								
•••••								
•••••	•••••		•••••		•••••	••••••	•••••	· • • • • • • • • • • • • • • • • • • •
	•••••		••••••	•••••		•••••	•••••	
	•••••	•••••	•••••	••••••	•••••	•••••••		
	•••••					•••••		
						•••••		
						•••••		

5 The linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ is represented by the matrix **M**, where

$$\mathbf{M} = \begin{pmatrix} 1 & 2 & 0 & 4 \\ 5 & 2 & 1 & -3 \\ 4 & 0 & 1 & -7 \\ -2 & 4 & -1 & \alpha \end{pmatrix}.$$

It is given that the rank of M is 2.

(i)	Find the value of α and state a basis for the range space of T.	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

Obtain a basis for the null space of T.	[4]

6 The curve *C* has equation

$$y = \frac{x^2}{kx - 1},$$

where k is a positive constant.

(1)	Obtain the equations of the asymptotes of C .	[3]
(ii)	Find the coordinates of the stationary points of C .	[3]
		•••••

iii)	Sketch C . [3]

Find the shortest distance	between the lines l_1 and l_2 .	
		•••••

Find the acute angle between the line l_2 and the plane containing A , B and D .	
	••••••
	••••••••
	•••••••••••••••••••••••••••••••••••••••
	••••••

8 Find the particular solution of the differential equation	8	Find the	particular	solution	of the	differential	equation
--	---	----------	------------	----------	--------	--------------	----------

	$9\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + x = 50$	$\sin t$,	
given that when $t = 0$, $x = 0$ and $\frac{d}{dt}$	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.$		[10]
		•••••	

9 A cubic equation $x^3 + bx^2 + cx + d = 0$ has real roots α , β and γ such

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -\frac{5}{12},$$
$$\alpha\beta\gamma = -12,$$
$$\alpha^3 + \beta^3 + \gamma^3 = 90.$$

(i)	Find the values of c and d .	[3]
(ii)	Express $\alpha^2 + \beta^2 + \gamma^2$ in terms of b.	[2]
(iii)	Show that $b^3 - 15b + 126 = 0$.	[4]

•••••	•••••		•••••
•••••		• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••		•••••
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••			•••••
•••••			
Given that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$	126 = 0, deduce the va	
Given that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
Fiven that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
ten that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
en that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
ven that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
ven that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
yen that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
en that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
en that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
wen that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
en that $3 + i\sqrt{12}$ is	s a root of $y^3 - 15y +$		
		126 = 0, deduce the va	
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	lue of b.
		126 = 0, deduce the va	llue of b.
		126 = 0, deduce the va	lue of b.

10	Let $I_n =$	$\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi}$	$\cot^n x \mathrm{d}x,$	where $n \ge$: 0.
----	-------------	--	--------------------------	---------------	------

(i) By considering $\frac{d}{dx}(\cot^{n+1}x)$, or otherwise, show that

$I_{n+2} = \frac{1}{n+1} - I_n.$	[5]

The curve C has equation $y = \cot x$, for $\frac{1}{4}\pi \le x \le \frac{1}{2}\pi$.

(ii)	Find, in an exact form, the y-coordinate of the centroid of the region enclosed by C, the line $x = \frac{1}{4}\pi$ and the x-axis.

11 Answer only **one** of the following two alternatives.

EITHER

A 3×3 matrix **A** has distinct eigenvalues 2, 1, 3, with corresponding eigenvectors

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 0 \\ b \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

respectively, where b is a positive constant.

Find A in terms of b .	[9]

(ii)	Find $\mathbf{A}^{-1} \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}$.	[2]
(iii)	It is given that $\mathbf{A}^n \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} \text{and} \mathbf{A}^n \begin{pmatrix} -1 \\ 0 \\ b \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ b^{-1} \end{pmatrix}.$	
	Find the values of n and b .	[3]

OR

$$y = a^t$$
,

where a is a positive constant.

(i)	(a)	By differentiating $\ln y$ with respect to t , show that $\frac{dy}{dt} = a^t \ln a$.	[3]
	(b)	Write down $\frac{d^2y}{dt^2}$.	[1]
(ii)	Dete	ermine the set of values of a for which the infinite series	
		$y + \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + \frac{\mathrm{d}^3y}{\mathrm{d}t^3} + \dots$	
	is co		
	15 00	onvergent.	[3]
		onvergent.	[3]

A curve has parametric equation

$$x = t^a$$
, $y = a^t$.

(iii)	Find $\frac{d^2y}{dx^2}$ in terms of a and t, and show that, when $t = 2$,	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2^{1-2a} (1 - a + 2\ln a) \ln a.$	[7]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.