

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

9588768053

FURTHER MATHEMATICS

9231/22

Paper 2 Further Pure Mathematics 2

May/June 2020

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

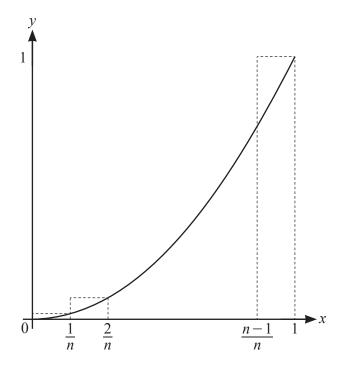
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.


BLANK PAGE

	1	Find t	the s	solution	of the	differential	equation
--	---	--------	-------	----------	--------	--------------	----------

$\frac{\mathrm{d}y}{\mathrm{d}x}$	$-5y = e^{-7x}$
for which $y = 0$ when $x = 0$. Give your answer in	the form $y = f(x)$. [6]

(a)	By differentiating $\ln y$ with respect to x, show that $\frac{dy}{dx} = 2^x \ln 2$.	[3]
(b)	Write down $\frac{d^2y}{dx^2}$.	[1]
(c)	Hence find the first three terms in the Maclaurin's series for 2^x .	[3]

$v=z_1^{3k}+z_2^{3k}+z_3^{3k}$, where k is a positive integer and z_1,z_2,z_3 are the roots of $z^3=-1$ - Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .	•••••				
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .			,		
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .					•••••
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .	•••••				
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .	••••••				
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .	•••••				
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R>0$, giving R and α in terms of k .					
Express w in the form $Re^{i\alpha}$, where $R > 0$, giving R and α in terms of k .		•••••	······	,	2
	21. 21.	21-		z_1, z_2, z_3 are the ro	pots of $z^3 = -1 - i$
	$y = z_1^{3k} + z_2^{3k} + z_2^{3k}$	z_3^{3k} , where k is a po	ositive integer and	. 2 5	
	_				k.
	_				k.
	_				k.
	_				k.
	_				k.
					k.
					k.
	_		R > 0, giving	R and α in terms of	
	_		R > 0, giving	R and α in terms of	
	_		R > 0, giving	R and α in terms of	

The diagram shows the curve with equation $y = x^2$ for $0 \le x \le 1$, together with a set of n rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of these rectangles, show that

$\int_0^1 x^2 \mathrm{d}x < \frac{2n^2 + 3n + 1}{6n^2}.$	[4]

(b)	Use a similar method to find, in terms of n , a lower bound for $\int_0^1 x^2 dx$. [4]

Find the exact value of a , giving your answer in logarithmic form.	
	•••••
	•••••
	•••••

•••••	,	••••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	
••••••								• • • • • • • • • • • • • • • • • • • •	
								• • • • • • • • • • • • • • • • • • • •	
•••••			••••••	•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
				•••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••
									•••••
••••••			••••••	••••••	••••••		•••••		
		•••••		•••••	•••••		•••••		
								• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••				•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••				•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••
									•••••
•••••	•••••			•••••	••••••				
				•••••	•••••		•••••		
							••••		
•••••			••••••	••••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

(a)	integral I_n , where n is an integer, is defined by $I_n = \int_0^{\frac{1}{2}} (1-x^2)^{-\frac{1}{2}n} dx$. Find the exact value of I_1 .	[2]
(b)	By considering $\frac{d}{dx} \left(x \left(1 - x^2 \right)^{-\frac{1}{2}n} \right)$, or otherwise, show that	
	$nI_{n+2} = 2^{n-1}3^{-\frac{1}{2}n} + (n-1)I_n.$	[5]

determined.	[

7 It is given that $x = t^3 y$ and

$$t^{3} \frac{d^{2} y}{dt^{2}} + (4t^{3} + 6t^{2}) \frac{dy}{dt} + (13t^{3} + 12t^{2} + 6t)y = 61e^{\frac{1}{2}t}.$$

	di .
(a)	Show that
	$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 13x = 61e^{\frac{1}{2}t}.$ [4]

	3x + y + z = 0,	
	ax + 6y - z = 0,	
	ay - 2z = 0,	
	does not have a unique solution.	I
he	matrix A is given by	
	$\mathbf{A} = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 6 & -1 \\ 0 & 0 & -2 \end{pmatrix}.$	
	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -2 \end{pmatrix}$	
o)	Use the characteristic equation of A to find the inverse of A^2 .	
	•	
		•••••

Find a matrix P and a diagonal matrix D such that $\mathbf{A}^5 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	[7]

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.