

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEM	ATICS		9231/11
Paper 1		O	ctober/November 2019
			3 hours
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

International Education

coordinates of the centroid of the region enclosed by C , the line $x = 1$ and the x -axis.	[

It is given that $y = \ln(ax + 1)$, who for every positive integer n ,			
	$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = (-1)^{n-1}$	$\frac{(n-1)!a^n}{(ax+1)^n}.$	[6]
		•••••	
		•••••	
		••••••	

3	The integral I_n ,	where n is a	positive into	eger, is defined	by
9	The integral In,	wilcie ii is a	positive into	eger, is defined	v_{j}

$$I_n = \int_{\frac{1}{2}}^1 x^{-n} \sin \pi x \, \mathrm{d}x.$$

Show that	
$n(n+1)I_{n+2} = 2^{n+1}n + \pi - \pi^2 I_n.$	[5]
Find I in terms of π and I	[2]
Time I_5 in terms of n and I_1 .	[<i>4</i>]
	•••••
	•••••
	•••••
	•••••
	•••••
	$n(n+1)I_{n+2} = 2^{n+1}n + \pi - \pi^2 I_n.$

4	The line y	=2x+1	is an	asymptote	of the	curve C	with ed	quation
---	------------	-------	-------	-----------	--------	---------	---------	---------

$$y = \frac{x^2 + 1}{ax + b}.$$

(i)	Find the values of the constants a and b .	[3]
		•••••
		•••••
(ii)	State the equation of the other asymptote of C .	[1]
iii)	Sketch C . [Your sketch should indicate the coordinates of any points of intersection with	the

(i y-axis. You do not need to find the coordinates of any stationary points.] [3]

5 Let
$$S_N = \sum_{r=1}^N (5r+1)(5r+6)$$
 and $T_N = \sum_{r=1}^N \frac{1}{(5r+1)(5r+6)}$.

(i)	Use standard results from the List of Formulae (MF10) to show that	
	$S_N = \frac{1}{3}N(25N^2 + 90N + 83).$	[3]
(ii)	Use the method of differences to express T_N in terms of N .	[4]

							• • • • • • • • • • • • • • • • • • • •	
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
			• • • • • • • • • • • • • • • • • • • •	•••••				
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••		•••••	
ıd lim (<i>N</i> ⁻³	3S T)							
$\inf_{N\to\infty} (N^{-3})$	${}^{3}S_{N}T_{N}$).							
$\operatorname{id} \lim_{N \to \infty} (N^{-3})$	${}^{3}S_{N}T_{N}$).							
$\inf_{N \to \infty} (N^{-3})$	3S_NT_N).							
ad $\lim_{N\to\infty} (N^{-3})$	3S_NT_N).							
ad $\lim_{N\to\infty} (N^{-\zeta})$	3S_NT_N).							
ad $\lim_{N\to\infty} (N^{-\zeta})$	3S_NT_N).							
ad $\lim_{N\to\infty} (N^{-3})$	3S_NT_N).							
and $\lim_{N\to\infty} (N^{-3})$								

6	With O as the origin, the po	have position	vectors	
		$\mathbf{i} - \mathbf{j}$,	$2\mathbf{i} + \mathbf{j} + 7\mathbf{k},$	i - j + k
	racpactivaly			

$$\mathbf{i} - \mathbf{j}$$
, $2\mathbf{i} + \mathbf{j} + 7\mathbf{k}$, $\mathbf{i} - \mathbf{j} + \mathbf{l}$

respectively.

LIIIC	the shortest distance between the lines OC and AB .	[5]
•••••		
• • • • • •		
•••••		
• • • • • •		•••••
• • • • • •		
• • • • • •		
•••••		•••••
••••		
••••		
•••••		

of the lines <i>OC</i> and <i>AB</i>	5.			[4
•••••	•••••	••••••	•••••	

- 7 The equation $x^3 + 2x^2 + x + 7 = 0$ has roots α , β , γ .
 - (i) Use the relation $x^2 = -7y$ to show that the equation

$$49y^3 + 14y^2 - 27y + 7 = 0$$

has roots $\frac{\alpha}{\beta\gamma}$, $\frac{\beta}{\gamma\alpha}$, $\frac{\gamma}{\alpha\beta}$.	[4]

(ii)	Show that $\frac{\alpha^2}{\beta^2 \gamma^2} + \frac{\beta^2}{\gamma^2 \alpha^2} + \frac{\gamma^2}{\alpha^2 \beta^2} = \frac{\beta^2}{\alpha^2 \beta^2}$	$=\frac{58}{49}$.	[3]
(iii)	Find the exact value of $\frac{\alpha^3}{\beta^3 \gamma^3} + \frac{\alpha^3}{\gamma^3}$	$\frac{\beta^3}{\beta^3 \alpha^3} + \frac{\gamma^3}{\alpha^3 \beta^3}.$	[2]

8 The matrix **M** is defined by

$$\mathbf{M} = \begin{pmatrix} 2 & m & 1 \\ 0 & m & 7 \\ 0 & 0 & 1 \end{pmatrix},$$

where $m \neq 0, 1, 2$.

ind a matrix P and a diagonal matrix D such that $\mathbf{M} = \mathbf{PDP}^{-1}$.	[7]
	••••••

© UCLES 2019

(ii)	Find $\mathbf{M}^7 \mathbf{P}$. [3]

9	(i)	I Ico d	a N	Agizra's	theorem	to	chow	that
9	(1)	-Use a	e iv	ioivre s	ineorem	TO S	snow	tnai

(0	$\sec^{\mathfrak{o}}\theta$	[6]
$\sec \theta =$	$\frac{\sec^6\theta}{32 - 48\sec^2\theta + 18\sec^4\theta - \sec^6\theta}$. [6]
•••••		
••••••		
	••••••	•••••
•••••		
	••••••	•••••

(ii)	Hence	obtain	the roots	of	the	equation
------	-------	--------	-----------	----	-----	----------

-
$3x^6 - 36x^4 + 96x^2 - 64 = 0$

in the form $\sec q\pi$, where q is rational.	[5]

10	The	matrix	A	is	defined	by
----	-----	--------	---	----	---------	----

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 1 \\ 1 & -2 & -2 \\ 2 & 3 & \theta \end{pmatrix}.$$

(i) (a)	Find the rank of A when $\theta \neq -1$.	[3]
(b)	Find the rank of A when $\theta = -1$.	[1]
Consider	r the system of equations	
	x + 5y + z = -1,	
	x - 2y - 2z = 0, $2x + 3y + \theta z = \theta.$	
(ii) Sol	ve the system of equations when $\theta \neq -1$.	[3]

	•••••
	•••••
	•••••
Find the general solution when $\theta = -1$.	[3]
	•••••
	•••••
	•••••
	•••••
	•••••
Show that if $\theta = -1$ and $\phi \neq -1$ then $\mathbf{A}\mathbf{x} = \begin{pmatrix} -1 \\ 0 \\ \phi \end{pmatrix}$ has no solution.	[2]
	•••••
	•••••
	•••••
	•••••
	Find the general solution when $\theta = -1$.

11 Answer only **one** of the following two alternatives.

EITHER

It is given that $w = \cos y$ and

$$\tan y \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2\tan y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \mathrm{e}^{-2x}\sec y.$$

(i) Show	that
----------	------

$$\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + 2\frac{\mathrm{d}w}{\mathrm{d}x} + w = -\mathrm{e}^{-2x}.$$
 [4]

(ii)	Find the particular solution for y in terms of x, given that when $x = 0$, $y = \frac{1}{3}\pi$ and $\frac{dy}{dx} = \frac{1}{\sqrt{3}}$. [10]

OR

The curves C_1 and C_2 have polar equations, for $0 \leqslant \theta \leqslant \frac{1}{2}\pi$, as follows:

$$C_1 : r = 2(e^{\theta} + e^{-\theta}),$$

 $C_2 : r = e^{2\theta} - e^{-2\theta}.$

The curves intersect at the point *P* where $\theta = \alpha$.

(i)	Show that $e^{2\alpha} - 2e^{\alpha} - 1 = 0$. Hence find the exact value of α and show that the value of r at P is $4\sqrt{2}$.

(ii)	Sketch C_1 and C_2 on the same diagram.	[3]
(iii)	Find the area of the region enclosed by C_1 , C_2 and the initial line, giving your answer correct 3 significant figures.	t to [5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		•••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.