Cambridge Assessment International Education Cambridge International Advanced Level | CANDIDATE
NAME | | | | |-----------------------|-------------------------|---------------------|---------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | FURTHER MATHEM | ATICS | | 9231/22 | | Paper 2 | | Oc | tober/November 2019 | | | | | 3 hours | | Candidates answer o | n the Question Paper. | | | | Additional Materials: | List of Formulae (MF10) | | | #### **READ THESE INSTRUCTIONS FIRST** Write your centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. Where a numerical value is necessary, take the acceleration due to gravity to be 10 m s^{-2} . The use of a calculator is expected, where appropriate. Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit. You are reminded of the need for clear presentation in your answers. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. # **BLANK PAGE** | | | | | | • | the acceler | | | |--------|--------|--------|--------|--------|--------|-------------|--------|--------| | | | | | | | | | | | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | ••••• | | | ••••• | ••••• | | ••••• | •••••• | ••••• | •••••• | •••••• | •••••• | •••••• | ••••• | ••••• | ••••• | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | ••••• | | •••••• | ••••• | | | | ••••• | ••••• | | | ••••• | | | | | | | | | | | | ••••• | ••••• | •••••• | •••••• | •••••• | •••••• | ••••• | ••••• | •••••• | ••••• | ••••• | •••••• | ••••• | ••••• | ••••• | ••••• | •••••• | •••••• | ••••• | | | | | | | | | | | | ••••• | •••••• | •••••• | ••••• | •••••• | •••••• | •••••• | •••••• | •••••• | ••••• | •••••• | •••••• | •••••• | ••••• | •••••• | •••••• | ••••• | ••••• | •••••• | A uniform square lamina ABCD of side 4a and weight W rests in a vertical plane with the edge AB inclined at an angle θ to the horizontal, where $\tan \theta = \frac{1}{3}$. The vertex B is in contact with a rough horizontal surface for which the coefficient of friction is μ . The lamina is supported by a smooth peg at the point E on AB, where BE = 3a (see diagram). | Find expressions in terms of W for the normal reaction forces at E and B . | [5] | |--|-----| ••• | |------|---|-----| | | | | | | | ••• | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | | | (;;) | Given that the lamine is about to aline find the value of u | 21 | | (11) | Given that the lamina is about to slip, find the value of μ . | 3] | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | ••• | ••• | | | | | | | | ••• | | | | | 3 Three uniform small spheres A, B and C have equal radii and masses 5m, 5m and 3m respectively. | (-) | Show that the speed of A after its collision with B is $\frac{1}{2}u(1-e)$ and find the speed of B. [3] | |-----|--| | | $\frac{1}{2}$ | É | ere B now collides with sphere C . Subsequently there are no further collisions between any of the eres. | | e | Find the set of possible values of e . [6] | | ne | Find the set of possible values of <i>e</i> . [6 | | | Find the set of possible values of <i>e</i> . [6 | | e | Find the set of possible values of <i>e</i> . [6 | | ne | Find the set of possible values of <i>e</i> . [6 | | ne | Find the set of possible values of <i>e</i> . [6 | | e | Find the set of possible values of <i>e</i> . [6 | A particle P of mass m is attached to one end of a light inextensible string of length a. The other end | projected vertically downwards with speed $\sqrt{(2ag)}$ so that it begins to move along a circular path string becomes slack when OP makes an angle θ with the upward vertical through O . | |--| | Show that $\cos \theta = \frac{2}{3}$. |
••••• | | | ••••• | | | ••••• | |-----------|--------|---------|--------|--------|----------|---| |
 |
••••• | ••••• | •••••• | ••••• | ••••• | | ••••• | |
 | | | | | | | |
••••• | | | | | | ••••• | |
 | | | | | | | | | | | | | | | |
 | ••••• | •••••• | ••••• | ••••• | | • | |
 | | | | | | ••••• | |
 | | | | | | ••••• | |
 | | | | | | | | | | | | | | | |
 | •••••• | ••••••• | •••••• | •••••• | | ••••• | |
••••• | | ••••• | ••••• | ••••• | | ••••• | |
 | | | | ••••• | | | |
 |
 | | ••••• | ••••• | | | ••••• | |
••••• | ••••• | ••••• | ••••• | | | ••••• | |
••••• | | | | | | ••••• | |
 | | | | | | | | | | | | | | | |
 | ••••• | •••••• | •••••• | ••••• | •••••••• | • | |
 | | | | | | ••••• | |
 | | | | | | | | | | | | | | | A thin uniform rod AB has mass λM and length 2a. The end A of the rod is rigidly attached to the surface of a uniform hollow sphere (spherical shell) with centre O, mass 3M and radius a. The end B of the rod is rigidly attached to the surface of a uniform solid sphere with centre C, mass 5M and radius a. The rod lies along the line joining the centres of the spheres, so that CBAO is a straight line. The horizontal axis L is perpendicular to the rod and passes through the point of the rod that is a distance $\frac{1}{2}a$ from B (see diagram). The object consisting of the rod and the two spheres can rotate freely about L. | (i) | Show that the moment of inertia of the object about L is $\left(\frac{408+7\lambda}{12}\right)Ma^2$. | [6] | |-----|---|-------| | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | ••••• | | | | | | | | ••••• | | | | ••• | |------|--|-----------| | | | | | | | . | ••• | | | | | | | | ••• | | | | | | | | ••• | | | | | | | | · • • • | | | | | | | | | | The | period of small oscillations of the object about L is $5\pi\sqrt{\left(\frac{2a}{g}\right)}$. | | | 1110 | $\bigvee \left(\begin{array}{c} g \end{array} \right)$ | | | | | | | (ii) | Find the value of λ . | [6] | | | | | | | | · • • • | ••• | | | | | | | | ••• | | | | | | | | • • • • | | | | | | | | | | | | | | | | . | ••• | | | | | | | | ••• | | | | | | | | · • • • | | | | | | | | | | | | | | | | · • • • | | | | | | | | | | | | ••• | | | | | | | | ••• | | | | | 6 | distr | andom sample of 9 members is taken from the large number of members of a sports club, a r heights are measured. The heights of all the members of the club are assumed to be normal ributed. A 95% confidence interval for the population mean height, μ metres, is calculated from the data as $1.65 \le \mu \le 1.85$. | |------------|---| | (i) | Find an unbiased estimate for the population variance. | (ii) | Denoting the height of a member of the club by x metres, find Σx^2 for this sample of 9 members | | 、 / | 9231/22/O/N/19 © UCLES 2019 7 The time, T days, before an electrical component develops a fault has distribution function F given by | | | $F(t) = \begin{cases} 1 - e^{-at} \\ 0 \end{cases}$ | $t \ge 0$, otherwise, | | |---------------|---|---|------------------------|---| | whe | ere a is a positive constan | t. The mean value of | T is 200. | | | (i) | Write down the value of | <i>a.</i> | | [1 | | | | | | | | | | | | | | (ii) | Find the probability that | an electrical compone | ent of this type devel | ops a fault in less than 150 days
[2 | nents, which develo | p faults independently of eac | | othe
is gr | | fter 150 days, at least | nents, which develo | p faults independently of each | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | Ifter 150 days, at least ole value of n . | nents, which develo | p faults independently of each
nents has not developed a fault | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | fter 150 days, at least ble value of <i>n</i> . | nents, which develo | p faults independently of each
nents has not developed a fault
[4 | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | fter 150 days, at least ble value of <i>n</i> . | nents, which develo | p faults independently of each
nents has not developed a faul
[4 | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | fter 150 days, at least ble value of <i>n</i> . | nents, which develo | p faults independently of each
nents has not developed a fault
[4 | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | fter 150 days, at least ble value of <i>n</i> . | nents, which develo | p faults independently of each nents has not developed a fault. [4 | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | fter 150 days, at least ble value of <i>n</i> . | nents, which develo | p faults independently of each nents has not developed a fault [4 | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | fter 150 days, at least ble value of <i>n</i> . | nents, which develo | p faults independently of each nents has not developed a fault [4 | | othe
is gr | er. The probability that, a reater than 0.99. Find the smallest possib | fter 150 days, at least ble value of <i>n</i> . | nents, which develo | p faults independently of each nents has not developed a fault [4 | | A random sample of 8 elephants from region A is taken and their weights, x tonnes, are recorded (1 tonne = $1000 \mathrm{kg}$.) The results are summarised as follows. | |---| | $\Sigma x = 32.4 \qquad \Sigma x^2 = 131.82$ | | A random sample of 10 elephants from region B is taken. Their weights give a sample mean of 3.78 tonnes and an unbiased variance estimate of 0.1555 tonnes ² . The distributions of the weights of elephants in regions A and B are both assumed to be normal with the same population variance. Test at the 10% significance level whether the mean weight of elephants in region A is the same as the mean weight of elephants in region B . | **9** A random sample of five pairs of values of x and y is taken from a bivariate distribution. The values are shown in the following table, where p and q are constants. | х | 1 | 2 | 3 | 4 | 5 | |---|---|---|---|---|---| | у | 4 | p | q | 2 | 1 | The equation of the regression line of y on x is y = -0.5x + 3.5. | (i) | Find the values of p and q . | [7] | |-----|----------------------------------|-----| (ii) | Find the value of the product moment correlation coefficient. [3] | |------|---| 10 | The random | variable <i>X</i> has | probability | density | function | f given | ı by | |--|-----------|------------|-----------------------|-------------|---------|----------|---------|------| |--|-----------|------------|-----------------------|-------------|---------|----------|---------|------| has probability density function f given by $$f(x) = \begin{cases} \frac{1}{30} \left(\frac{8}{x^2} + 3x^2 - 14 \right) & 2 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$ | (i) | Find the distribution function of X . | [3] | |------|--|-----| The | random variable Y is defined by $Y = X^2$. | | | (ii) | Find the probability density function of Y . | [4] | (iii) | Find the value of y such that $P(Y < y) = 0.8$. [3] | |-------|--| 11 Answer only **one** of the following two alternatives. ### **EITHER** The points A and B are a distance 1.2 m apart on a smooth horizontal surface. A particle P of mass $\frac{2}{3}$ kg is attached to one end of a light spring of natural length 0.6 m and modulus of elasticity 10 N. The other end of the spring is attached to the point A. A second light spring, of natural length 0.4 m and modulus of elasticity 20 N, has one end attached to P and the other end attached to B. | | • | |--|---| | | | | | • | | | | | particle P is displaced by 0.05 m from the equilibrium position towards A and then | released | | | | | particle P is displaced by 0.05 m from the equilibrium position towards A and then Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | Show that P performs simple harmonic motion and state the period of the motion. | | | | | 501 | |---------|--|--------| | (iii) | Find the speed of P when it passes through the equilibrium position. | [2] | (iv) | Find the speed of P when its acceleration is equal to half of its maximum value. | [3] | | (-1) | That the speed of T. When his acceptant is equal to hair of his maximum variation | [~] | | | | •••••• | ## OR The number of puncture repairs carried out each week by a small repair shop is recorded over a period of 40 weeks. The results are shown in the following table. | Number of repairs in a week | 0 | 1 | 2 | 3 | 4 | 5 | ≥ 6 | |-----------------------------|---|----|---|---|---|---|-----| | Number of weeks | 6 | 15 | 9 | 6 | 3 | 1 | 0 | | (i) Calculate the mean and vari
suitability of a Poisson dist | | | | | | | [3 | |---|---------------------------------------|--------------------------------|---------------------------------|-------------|------------|-----------|---------------------------| | | ••••• | ••••• | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | ••••• | | | | | | | | | | | | | | ••••• | | ••••• | llowing table shows some of t | he expect | ed freque | ncies, cor | | | | | | llowing table shows some of to weeks using a Poisson distrib | he expect
oution wit | ed freque
h mean 1. | ncies, cor
6. | rect to 3 c | | | a period o | | ecords over a longer period of llowing table shows some of to weeks using a Poisson distribution. Number of repairs in a week Expected frequency | he expect | ed freque | ncies, cor | | lecimal pl | aces, for | | | lowing table shows some of t
weeks using a Poisson distrib
Number of repairs in a week
Expected frequency | he expect
oution wit
0
8.076 | ed freque h mean 1. 1 12.921 | ncies, cor
6.
2
10.337 | 3
5.513 | lecimal pl | aces, for | a period o | | lowing table shows some of t
weeks using a Poisson distrib
Number of repairs in a week
Expected frequency | he expect
oution wit
0
8.076 | ed freque h mean 1. 1 12.921 | ncies, cor
6.
2
10.337 | 3
5.513 | lecimal pl | aces, for | a period of $\geqslant 6$ | | lowing table shows some of t
weeks using a Poisson distrib
Number of repairs in a week
Expected frequency | he expect
oution wit
0
8.076 | ed freque h mean 1. 1 12.921 | ncies, cor
6.
2
10.337 | 3
5.513 | lecimal pl | aces, for | a period of $\geqslant 6$ | | lowing table shows some of t
weeks using a Poisson distrib
Number of repairs in a week
Expected frequency | he expect
oution wit
0
8.076 | ed freque h mean 1. 1 12.921 | ncies, cor
6.
2
10.337 | 3
5.513 | lecimal pl | aces, for | a period of $\geqslant 6$ | | lowing table shows some of t
weeks using a Poisson distrib
Number of repairs in a week
Expected frequency | he expect
oution wit
0
8.076 | ed freque h mean 1. 1 12.921 | ncies, cor
6.
2
10.337 | 3
5.513 | lecimal pl | aces, for | a period of $\geqslant 6$ | | llowing table shows some of to weeks using a Poisson distribution. Number of repairs in a week | he expect
oution wit
0
8.076 | ed freque h mean 1. 1 12.921 | ncies, cor
6.
2
10.337 | 3
5.513 | lecimal pl | aces, for | a period of $\geqslant 6$ | | (iii) | Carry out a goodness of fit test of a Poisson distribution with mean 1.6, using a 10% significance level. [8] | |-------|---| ### **Additional Page** | If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. | |---| Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.