Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | PHYSICS 9702/51 Paper 5 Planning, Analysis and Evaluation October/November 2019 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. **1** When a light plastic ball is placed in a vertical column of moving air, the ball becomes stationary at a height *h*, as shown in Fig. 1.1. Fig. 1.1 A student is using an air blower to create the vertical column of moving air. The student connects the motor of the air blower to a d.c. power supply. It is suggested that the relationship between the radius *r* of the ball and *h* is $$\frac{4\pi r^3 gh}{3} = PK$$ where g is the acceleration of free fall, P is the power of the motor and K is a constant. Design a laboratory experiment to test the relationship between r and h. Explain how your results could be used to determine a value for K. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to: - the procedure to be followed - the measurements to be taken - the control of variables - the analysis of the data - any safety precautions to be taken. © UCLES 2019 9702/51/O/N/19 |
 |
 |
 | |------|------|------| |
 |
 |
 | |------| | | | | | | | | | | |
 |
 [15] | 2 A student is investigating the oscillations of a mass attached to two springs connected in series, as shown in Fig. 2.1. Fig. 2.1 A stopwatch is used to measure the time t for 10 oscillations. The measurement of t is repeated and the average period T is determined. The experiment is repeated for different masses. It is suggested that T and mass M are related by the equation $$T = \frac{2\pi M^q}{\sqrt{k}}$$ where k is the spring constant of the two springs in series and q is a constant. (a) A graph is plotted of lg *T* on the *y*-axis against lg *M* on the *x*-axis. Determine expressions for the gradient and the *y*-intercept. **(b)** Values of M, $\lg (M/g)$ and measurements of t are given in Fig. 2.2. | M/g | t/s | t/s | T/s | lg (<i>M</i> /g) | lg (T/s) | |-----|------|------|-----|-------------------|----------| | 155 | 15.2 | 16.0 | | 2.190 | | | 205 | 18.3 | 17.5 | | 2.312 | | | 250 | 19.3 | 20.1 | | 2.398 | | | 305 | 21.0 | 21.8 | | 2.484 | | | 355 | 23.5 | 22.7 | | 2.550 | | | 410 | 24.1 | 24.9 | | 2.613 | | Fig. 2.2 Calculate and record values of T/s and $\lg(T/s)$ in Fig. 2.2. Include the absolute uncertainties in T/s and $\lg(T/s)$. [4] (c) (i) Plot a graph of $\lg (T/s)$ against $\lg (M/g)$. Include error bars for $\lg (T/s)$. [2] (ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled. [2] (iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer. gradient = [2] © UCLES 2019 9702/51/O/N/19 | | (iv) |) Determine the <i>y</i> -intercept of the line of best fit. Do not incl | ude the absolute uncertainty. | |-----------|-----------|---|---| <i>y</i> -intercept = | [1] | | (d) | Usi
be | sing your answers to (a) , (c)(iii) and (c)(iv) , determine the value concerned with units. Do not include the absolute uncertain | alues of k and q . You need not ties. | k = | | | | | <i>q</i> = | [2] | | (0) | Hoi | aing your answers to (d) determine the mass Masseded to gi | - | | (e) | USII | sing your answers to (d) , determine the mass M needed to gi | ve a period of 1.08. | <i>M</i> = | g [1] | | | | | [Total: 15] | | ission to | o repro | produce items where third-party owned material protected by copyright is included has bee | en sought and cleared where possible. Every | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. © UCLES 2019 9702/51/O/N/19