

Cambridge Assessment International Education

Cambridge International Advanced Level

970)9/31
May/June	2019
1 hour 45 mii	nutes

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 18 printed pages and 2 blank pages.

Ose the trapezium rule with 5 intervals to	$\int_{0}^{3} 2^{x} - 4 \mathrm{d}x.$	[3]
•	Jo ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	

Confect to 2	decimal places.						
				•••••	•		•
••••••		••••••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••		••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
					• • • • • • • • • • • • • • • • • • • •		
•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•••••		•••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
•••••			••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••			•••••	•••••	•••••		•••••
•••••			••••••	•••••	•••••	•••••	•••••

•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	
•••••		••••••		•••••	•••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		••••••		••••••	•••••	••••••	•••••	••••••	•••••	•••••		•••••	••••••
				••••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		•••••			•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		•••••			•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
•••••		•••••		•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	••••••	•••••	•••••	••••••	••••••	••••••

equation for 0°	< 0 < 100 .				
		 •••••	 		
		 •••••	 		
		 •••••	 ••••••		
		 	 		• • • • • • • • • • • • • • • • • • • •
		 	 		•••••
		 	 	••••	
		 •••••	 •••••		
		 •••••	 		
	•••••	 	 	•••••	
		 •••••	 	•••••	

	ifferentiate $\frac{1}{\sin^2 \theta}$ with respect to θ .	
		••••
••••		••••
••••		••••
••••		••••
		••••
••••		
••••		
••••		
••••		••••
 i) Th	ne variables x and θ satisfy the differential equation $x \tan \theta \frac{dx}{d\theta} + \csc^2 \theta = 0,$	••••
for	The variables x and θ satisfy the differential equation $x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ or $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the differential staining an expression for x in terms of θ .	eq
for	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ $\text{r } 0 < \theta < \frac{1}{2}\pi \text{ and } x > 0. \text{ It is given that } x = 4 \text{ when } \theta = \frac{1}{6}\pi. \text{ Solve the differential}$	••••
for	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ or $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the differential staining an expression for x in terms of θ .	••••
for	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ or $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the differential staining an expression for x in terms of θ .	••••
for	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ or $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the differential staining an expression for x in terms of θ .	••••
for	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ or $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the differential staining an expression for x in terms of θ .	••••
for	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$ or $0 < \theta < \frac{1}{2}\pi$ and $x > 0$. It is given that $x = 4$ when $\theta = \frac{1}{6}\pi$. Solve the differential staining an expression for x in terms of θ .	••••

•	
•	
•	
•	
•	
•	
•	

(ii)	Hence, showing all necessary working, find the exact value of \int_0^{∞}	$\sin^3 x \mathrm{d}x. \tag{4}$

7

(i)

The diagram shows the curves $y = 4\cos\frac{1}{2}x$ and $y = \frac{1}{4-x}$, for $0 \le x < 4$. When x = a, the tangents to the curves are perpendicular.

Show that $a = 4 - \sqrt{2\sin\frac{1}{2}a}$.	[4]

••••••	••••••	•••••					
••••••		••••••	••••••	•••••		•••••••	•••••
		••••••				•••••••••••••••••••••••••••••••••••••••	•••••
							•••••
						••••••	
						•••••	
		•••••		•••••			
				on in part (i) ecimal places	to determine	a correct t	o 3 de
			ation to 5 de	ecimal places			
			ation to 5 de	ecimal places	.		•••••
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			
places. Gi	ve the result	of each itera	ation to 5 do	ecimal places			

8	Let $f(x) =$	16 - 17x
0	Let $\Gamma(x) =$	$\frac{16-1/x}{(2+x)(3-x)^2}.$

•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••						•••••
•••••	••••••	••••••	••••••		•••••	•••••	•••••
••••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••
•••••	••••••	••••••	••••••		•••••	•••••	•••••
•••••							
••••••	•••••	••••••	•••••		•••••	•••••	•••••
•••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
							•••••
•••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••

																		[
• • • •	•••••							•••••				•••••	•••••					
•••	• • • • • • • • •	•••••	• • • • • • • •	••••••		•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••
•••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••
•••	•••••	•••••		•••••	· • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••		
•••								•••••			•••••	•••••	•••••		•••••			
												•••••						
•••	• • • • • • • • •	•••••	• • • • • • • •	••••••	, 	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••	• • • • • • • • •	•••••		•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••	• • • • • • • • •	•••••						•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••	
•••								•••••			•••••	•••••	•••••		•••••			
•••						•••••	•••••	•••••		•••••	•••••	•••••				•••••		
•••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••	•••••	•••••		•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	
•••						•••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••	•••••	•••••	
								•••••				•••••			•••••		•••••	
•••	•••••	•••••	• • • • • • • •	••••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••
•••	• • • • • • • • •	•••••		•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••	•••••	•••••		•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	
								•••••	•••••		•••••	•••••	•••••		•••••			

9

The diagram shows a set of rectangular axes Ox, Oy and Oz, and four points A, B, C and D with position vectors $\overrightarrow{OA} = 3\mathbf{i}$, $\overrightarrow{OB} = 3\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OC} = \mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$.

Find the equ	iation of the plane	BCD, giving you	ir answer in the f	orm $ax + by + cz =$	= d. [6]
			•••••		
			•••••		
			•••••		

••••••
•••••
••••••
•••••

10 Throughout this question the use of a calculator is not permitted.

The complex number $(\sqrt{3})$ + i is denoted by u.

Express u in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact values or otherwise state the exact values of the modulus and argument of u^4 .	of r and θ . Hence [5]

(ii)	Verify that u is a root of the equation $z^3 - 8z + 8\sqrt{3} = 0$ and state the other complex root of this equation. [3]

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - u| \le 2$ and $\text{Im } z \ge 2$, where Im z denotes the imaginary part of z. [5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.