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1  Use the trapezium rule with 3 intervals to estimate the value of

3
J 2% — 4| dx. 3]
0
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2 Showing all necessary working, solve the equation In(2x — 3) = 2Inx — In(x — 1). Give your answer
correct to 2 decimal places. [4]
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3 Find the gradient of the curve x° + 3xy> — y> = 1 at the point with coordinates (1, 3). [4]
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4 By first expressing the equation cot 8 — cot(0 + 45°) = 3 as a quadratic equation in tan 6, solve the
equation for 0° < 6 < 180°. [6]
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5 (i) Differentiate with respect to 6. [2]

(i) The variables x and 0 satisfy the differential equation
dx
Xtan 9@ +cosec’ 0 = 0,

for 0 < 0 < %7‘[ and x > 0. It is given that x = 4 when 0 = %7‘[. Solve the differential equation,

obtaining an expression for x in terms of 6. [6]
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6 (i) By first expanding sin(2x + x), show that sin 3x = 3 sinx — 4 sin> x. [4]
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1y
(i) Hence, showing all necessary working, find the exact value of J'2 sin’ x dx. [4]
0
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The diagram shows the curves y = 4 cos %x and y = - x for O < x < 4. When x = a, the tangents to
-X
the curves are perpendicular.
(i) Show that a =4 —/(2sin 1a). [4]
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(ii) Verify by calculation that a lies between 2 and 3. [2]

(iii) Use an iterative formula based on the equation in part (i) to determine a correct to 3 decimal
places. Give the result of each iteration to 5 decimal places. [3]
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16 —17x

8 Let f(X) = m

(i) Express f(x) in partial fractions. [5]
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(ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x.

[5]
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A X

The diagram shows a set of rectangular axes Ox, Oy and Oz, and four points A, B, C and D with
., . H . H . . —9 . . _—% 3 .
position vectors OA = 3i, OB = 3i+4j, OC =i+ 3jand OD = 2i + 3j + 5k.

(i) Find the equation of the plane BCD, giving your answer in the form ax + by + cz = d. [6]
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(ii) Calculate the acute angle between the planes BCD and OABC. (4]
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10 Throughout this question the use of a calculator is not permitted.
The complex number (v3) + 1 is denoted by u.

(i) Express u in the form re', where > 0 and —7 < 6 < 7, giving the exact values of r and 6. Hence
or otherwise state the exact values of the modulus and argument of u®. [5]
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(ii) Verify that u is a root of the equation z* — 8z + 8y3 = 0 and state the other complex root of this
equation. [3]

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities |z — u| < 2 and Im z > 2, where Im z denotes the imaginary part of z.

[5]
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Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.
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