

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/32
Paper 3 Pure M	athematics	3 (P3)		0	ctober/Nove	mber 2019
					1 hour	45 minutes
Candidates answ	ver on the C	Question Pa	per.			
Additional Mater	ials: Li	st of Formul	ae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

BLANK PAGE

© UCLES 2019 9709/32/O/N/19

3 decimal pla	ices.							
								•••••
								•••••
								••••
		•••••		•••••	•••••		•••••	•••••
								••••
				••••••				•••••
		•••••	•••••	•••••	•••••		•••••	•••••
		•••••						
		•••••		•••••	•••••			
••••••	••••••	•••••		••••••	•••••		••••••	•••••
		••••••		•••••••	•••••	•••••••••••••••••••••••••••••••••••••••	•••••	•••••
••••••	••••••	•••••		•••••	•••••	•••••	•••••	•••••
		•••••		••••••	•••••		•••••	•••••
				••••••		•••••		•••••
								•••••
•••••								•••••
				•••••	•••••			•••••

••••••	•••••	••••••	•••••	•••••	•••••	•••••
••••••	•••••••••	•••••••	••••••	•••••	••••••	
•••••			•••••			
			•••••			

divided by $x^2 + x - 1$ the remainder is $2x + 3$. Find the values of a and b.	
	•••••
	•••••
	••••••

	alue of R and give α correct to 3 decimal places.	
•••		
•		•••••
• •		
••		•••••
• • •		•••••
•		
• • •		•••••
• • •		•••••
• • •		•••••
• • •		•••••
		•••••
		•••••
•		•••••
• • •		
•••		•••••

			•••••				
••••••	•••••	•••••				•••••	••••••
			•••••				
••••••	••••••	•••••	•••••	••••••		•••••	
••••••		••••••					
••••••	•••••	••••••	•••••	•••••	,	•••••	

pomi	on the cu	rve at which	ch the tang	gent is pai	railei to ti	ie <i>x</i> -axis a	ına nna tr	ie y-coord	mate of this	S
•••••	••••••		•••••	•••••				•••••	•••••	••
				•••••						••
•••••	••••••	••••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••	••
				•••••				•••••		••
									•••••	••
•••••	••••••	••••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••
				•••••				•••••		••
									•••••	
•••••	••••••	••••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••	••
•••••	•••••			•••••						••
•••••	••••••	••••••	••••••	•••••	••••••	••••••	••••••	•••••	••••••	••
•••••	••••••	•••••	•••••	•••••	•••••			•••••		••
										••
									,	•
	•••••									

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

6 The variables x and θ satisfy the differential equation
--

for $0 < \theta < \pi$. It is expression for <i>x</i> in t	s given that $x = 1$ terms of $\cos \theta$.	when $\theta = \frac{1}{3}\pi$.	Solve the diffe	rential equation a	and obtain an [8]
					••••••
					•••••
					•••••
					•••••

7 (a) Find the complex number z satisfying the equation	
---	--

	iz	_		_
z +	7*	-2	=	0,

where z^* denotes the complex conjugate of z . Give your answer in the form $x + iy$, where x a y are real.	and [5]
	••••
	••••
	· • • • •
	••••
	· • • • •
	· • • • •
	••••
	· • • • •
	· • • • •
	••••
	· • • • •
	· • • • •
	••••
	••••

© UCLES 2019 9709/32/O/N/19

where $\operatorname{Im} z$ denotes the imaginary part of z.

(b)

(i) On a single Argand diagram sketch the loci given by the equations |z - 2i| = 2 and Im z = 3,

[2]

n the first qua	adrant the two	wo loci intersted by <i>P</i> .	sect at the point	P. Find the exa	act argument of
n the first qua	adrant the twoer represent	wo loci intersted by <i>P</i> .	sect at the point	P. Find the exa	act argument of
n the first qua	adrant the two	wo loci intersted by <i>P</i> .	sect at the point	P. Find the exa	act argument of
n the first qua	adrant the twoer represent	wo loci intersted by <i>P</i> .	sect at the point	P. Find the exa	act argument of
n the first qua	ndrant the two	wo loci intersted by <i>P</i> .	sect at the point	P. Find the exa	act argument of
n the first qua	adrant the twoer represent	vo loci intersted by P.	sect at the point	P. Find the exa	
n the first qua	er represent	wo loci intersted by P.	sect at the point	P. Find the exa	act argument of
omplex numb	per represent	ed by <i>P</i> .		P. Find the exa	
omplex numb	per represent	ed by <i>P</i> .			
omplex numb	per represent	ed by <i>P</i> .			
omplex numb	per represent	ed by <i>P</i> .			
omplex numb	per represent	ed by <i>P</i> .			

8	Let $f(x) =$	$2x^2 + x + 8$
o	Let $I(x) =$	$(2x-1)(x^2+2)$

 ••••••	•••••	••••••	•••••	•••••
•	••••••	•	•••••	••••••
 ••••••	•••••	•••••••	•••••	••••••
	•		•••••	••••••
 		•••••		
 ••••••	•••••	••••••	•••••	•••••
 ••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
 	•••••		•••••	•••••
 	•••••			•••••
 	•••••	••••••	•••••	•••••

nteger.		-	J ₁		e answer in th		
							•••••
							•••••
							•••••
							•••••
							•••••
••••••	••••••	•••••				••••••	
•••••		••••••		•••••			•••••
•••••							
•••••							•••••
•••••							•••••
							•••••
•••••	•••••		•••••	•••••	•••••••••••	••••••	•••••
•••••							•••••
							•••••
	•••••				•••••		•••••

- 9 It is given that $\int_0^a x \cos \frac{1}{3}x \, dx = 3$, where the constant a is such that $0 < a < \frac{3}{2}\pi$.
 - (i) Show that a satisfies the equation

	$4 - 3\cos\frac{1}{2}a$	
	$a = \frac{4 - 3\cos\frac{1}{3}a}{\sin\frac{1}{3}a}.$	[5]
	$\sin \frac{\pi}{3}a$	
•••••		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

	y calculatio							
••••••	•••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
			•••••					
	•••••	•••••	•••••			•••••		•••••
	•••••		•••••			•••••	•••••	•••••
••••••	•••••	•••••	•••••			•••••	•••••	••••••
•••••	••••••	•••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••			•••••	•••••	•••••
	terative for Give the res					o calculate	e a correct	to 3 dec
			n iteration		al places.			
			n iteration	to 5 decim	al places.			
			n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C		sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			
places. C	Give the res	sult of each	n iteration	to 5 decim	al places.			

(i) Find the po	osition vector of	f the point of inter	rsection of l and p .	
•••••				
•••••				
				 •••••
ii) Calculate t	he acute angle l	between l and p .		
ii) Calculate t	he acute angle l	between l and p .		
ii) Calculate t	he acute angle	between l and p .		
ii) Calculate t	he acute angle	between l and p .		

© UCLES 2019 9709/32/O/N/19

giving your answer in the form $ax + by + cz = d$.	
	••••••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.