Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/42 Paper 4 Theory (Extended) February/March 2022 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. This question is about the first 30 elements in the Periodic Table. Name the element which: (b) has atoms with an electronic structure of 2,8,1[1] (c) is extracted from hematite[1] (d) forms an oxide with a giant covalent structure[1] (e) is the gas with the slowest rate of diffusion at room temperature[1] (f) has an anhydrous chloride which turns pink when water is added[1] (g) has aqueous ions which form a white precipitate when added to aqueous silver ions (h) forms a blue hydroxide which dissolves in aqueous ammonia[1] (i) is added to molten iron to remove impurities in the steel making process[1] (j) is used to galvanise iron. [1] [Total: 10] - **2** A student adds excess large pieces of magnesium carbonate, MgCO₃, to dilute hydrochloric acid, HC*l*, and measures the volume of carbon dioxide gas, CO₂, given off. - (a) Add the missing state symbols to the chemical equation for the reaction. $$MgCO_3 + 2HCl..... \rightarrow MgCl_2(aq) + H_2O + CO_2$$ [1] **(b)** Complete the dot-and-cross diagram to show the electron arrangement of the ions in magnesium chloride. The inner shells have been drawn. Give the charges on the ions. [3] (c) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of carbon dioxide. Show outer shell electrons only. [2] (d) The graph shows how the volume of carbon dioxide gas changes with time. | (i) | Describe how the graph shows that the rate of this reaction decreases as time increases | |------|--| | | [1 | | (ii) | Explain, in terms of particles, why the rate of this reaction decreases as time increases. | | | [2 | (iii) The student repeats the experiment using powdered MgCO₃ instead of large pieces. All other conditions stay the same. On the grid, draw the line expected when powdered $MgCO_3$ is used instead of large pieces. [2] | (e) | Determine the | volume | of CO ₂ | gas | given | off | when | excess | MgCO ₃ | is | added | to | 25.0cm^3 | of | |-----|------------------------|-----------|--------------------|------|----------|------|-------|--------|-------------------|----|-------|----|-------------------|----| | | 0.400mol/dm^3 | HC1 at ro | om tem | pera | iture ai | nd p | ressu | re. | | | | | | | $$\mathrm{MgCO_3} \ + \ 2\mathrm{HC}\mathit{l} \ \rightarrow \ \mathrm{MgC}\mathit{l}_2 \ + \ \mathrm{H_2O} \ + \ \mathrm{CO_2}$$ Use the following steps. • Calculate the number of moles of HCl in 25.0 cm³ of 0.400 mol/dm³ of acid. • Determine the number of moles of CO₂ gas given off. | | | | | | | | | | | | | | r | n | 1 | c | I | |--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|---|---| • Calculate the volume of CO₂ gas given off in cm³. cm³ [Total: 14] | Nitr | rogei | n dioxide, NO ₂ , is an atmospheric pollutant and is formed in car engines. | | |------|-------|--|-----| | (a) | Exp | plain how nitrogen dioxide is formed in car engines. | | | | | | | | | | | [2] | | | | | | | (b) | Nitr | rogen dioxide causes respiratory problems. | | | | Sta | te one other adverse effect of nitrogen dioxide. | | | | | | [1] | | (c) | | rogen dioxide emissions can be reduced by adding an aqueous solution of urea, $(NH_2)_2C$ car exhaust gases. | Ю, | | | The | e heat of the exhaust gases breaks down the urea into simpler substances. | | | | (i) | Name the type of reaction which occurs when a substance is heated and breaks down in simpler substances. | nto | | | | | [1] | | | (ii) | One molecule of urea breaks down to form one molecule of ammonia and one oth molecule. | ner | | | | Complete the chemical equation to show the formula of the other molecule formed in treaction. | his | | | | $(NH_2)_2CO \rightarrow NH_3 + \dots$ | [1] | | (| (iii) | State the test for ammonia. | | | | | test | | | | | observations | | | | | | [2] | | (d) | The | e ammonia formed reacts with nitrogen dioxide to form nitrogen and water. | | | | (i) | Balance the equation for this reaction. | | | | | $NO_2 +NH_3 \rightarrowN_2 + 12H_2O$ | [2] | | | (ii) | State how the equation shows that the nitrogen in nitrogen dioxide is reduced. | | | | | | [1] | | | | | | | | (iii) | This reaction is a redox reaction. | |-----|-------|---| | | | State the meaning of the term <i>redox</i> . | | | | [1] | | (e) | 135 | 5 moles of urea, $(NH_2)_2CO$, is stored in the tank of a car. | | | Cal | culate the mass, in kg, of the stored $(NH_2)_2CO$. | | | | | | | | | | | | | | | | mass of $(NH_2)_2CO =kg$ [2] | | (f) | rem | other oxide of nitrogen formed in car engines is nitrogen monoxide, NO. A catalytic converter noves NO by reacting it with a gas formed by incomplete combustion of the fuel. Two n-toxic gases are formed. | | | (i) | Name the gas formed by incomplete combustion of the fuel. | | | | [1] | | | (ii) | Name the two non-toxic gases formed. | | | | and [1] | | | | [Total: 15] | - 4 This question is about chemical reactions and electricity. - (a) The diagram shows the apparatus used in the production of electrical energy in a simple cell. The zinc electrode dissolves in the electrolyte forming Zn²⁺(aq) ions. | | (i) | Draw an arrow on the diagram to show the direction of electron flow. | [1] | |-----|------------|--|-----| | | (ii) | Write the ionic half-equation for the reaction that occurs when the zinc electrode dissolve | s. | | | | | [2] | | (b) | The
met | e reading on the voltmeter can be increased if either zinc or iron is replaced by anoth
al. | er | | | (i) | Name a metal that can replace zinc and increase the reading on the voltmeter. | | | | | | [1] | | | (ii) | Name a metal that can replace iron and increase the reading on the voltmeter. | | | | | | [1] | | (c) | Fue | el cells are used to generate electricity. | | | | (i) | Name the reactants in a fuel cell. | | | | | | [1] | | | (ii) | Name the waste product of a fuel cell. | |[1] | (d) | Ele | ctricity can be used to break down aqueous or molten ionic compounds. | |-----|------|--| | | (i) | Name the process which uses electricity to break down aqueous or molten ionic compounds. | | | | [1] | | | (ii) | Explain why the ionic compound needs to be aqueous or molten. | | | | [1] | | (e) | Brir | ne is concentrated aqueous sodium chloride. | | | (i) | Name three substances which are manufactured by passing electricity through brine. | | | | 1 | | | | 2 | | | | 3[3] | | | (ii) | Name a different substance formed when molten sodium chloride is used instead of concentrated aqueous sodium chloride. | | | | [1] | | | | [Total: 13] | | Thi | s qu | estion is about alkanes and alkenes. | |-----|------|--| | (a) | Sho | ort-chain alkanes and alkenes can be formed from long-chain alkanes in a chemical reaction. | | | (i) | Name the type of chemical reaction which forms short-chain alkanes and alkenes from long-chain alkanes. | | | | [1] | | | (ii) | Decane has 10 carbon atoms. It forms ethane and ethene as the only products in this type of chemical reaction. | | | | Write the chemical equation for this reaction. | | | | [3] | | (b) | | ane reacts with chlorine at room temperature to form chloroethane, $C_2H_5C\mathit{l}$, and one other duct. | | | (i) | Name the other product formed. | | | (ii) | State the condition needed for this reaction to take place. | | | | [1] | | (c) | Eth | ene reacts with chlorine at room temperature to form dichloroethane, $C_2H_4Cl_2$. | | | | $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ | | | (i) | State why this is an addition reaction. | | | | [1] | | | | | (ii) The chemical equation for this reaction can be represented as shown. The energy change for the reaction is –180 kJ/mol. Use the bond energies in the table to calculate the bond energy of a C–Cl bond, in kJ/mol. | bond | C–H | C=C | Cl-Cl | C–C | |-----------------------|-----|-----|-------|-----| | bond energy in kJ/mol | 410 | 610 | 240 | 350 | Use the following steps. **step 1** Calculate the energy needed to break bonds. energy needed to break bonds =kJ **step 2** Use your answer in **step 1** and the energy change for the reaction to determine the energy released when bonds are formed. energy released when bonds form =kJ **step 3** Use your answer in **step 2** and bond energy values to determine the energy of a C–C*l* bond. bond energy of a C–Cl bond =kJ/mol [4] [Total: 11] **6** The names of four esters are listed. methyl propanoate ethyl propanoate propyl propanoate butyl propanoate | | | * * * | | |-----|-------|---|-----| | (a) | | ers are a family of organic compounds with similar chemical properties. They can resented by the formula $C_nH_{2n}O_2$. | be | | | (i) | State the name given to a family of organic compounds with similar chemical properties | s. | | | | | [1] | | | (ii) | Explain why members of a family of organic compounds have similar chemical properti | es. | | | | | [1] | | | (iii) | State the name given to a formula such as $C_nH_{2n}O_2$. | | | | | | [1] | | | (iv) | Determine the value of 'n' in butyl propanoate. | | | | | | [1] | | (b) | All f | our of the esters in the list are liquids at room temperature. | | | | Nar | ne the technique used to separate ethyl propanoate from a mixture of the four esters. | | | | | | [2] | | (c) | All f | our esters can be made by reacting different alcohols with the same substance. | | | | (i) | Name this substance and draw its structure. Show all of the atoms and all of the bonds | 3. | | | | name | | | | | structure | | | | | | | | | | | [2] | | | (ii) | Name the alcohol used to make methyl propanoate. | | | | | | [1] | | (d) Other esters, not in the list, have the same molecular formula as propyl propanoate, b structures. | | | | | | | | | |--|-------|--|--|--|--|--|--|--| | | (i) | State the term used to describe substances with the same molecular formula but differen structures. | | | | | | | | | | | | | | | | | | | (ii) | Name two esters with the same molecular formula as propyl propanoate. | | | | | | | | | | 1 | | | | | | | | | | 2 | | | | | | | | | | [2] | | | | | | | | (e) | Pol | yesters can be made from the two different molecules shown. | | | | | | | | | | н—о—с———с—о—н | | | | | | | | | | and | | | | | | | | | | н—о——о—н | | | | | | | | | (i) | Complete the diagram to show a section of the polyester made from these two molecules include all of the atoms and all of the bonds in the linkages. | [3 | | | | | | | | | (ii) | Name the type of polymerisation that takes place when this polymer forms. | | | | | | | | | | [1] | | | | | | | | | (iii) | Name a polyester. | | | | | | | | | | [1] | | | | | | | | | | [Total: 17 | | | | | | | ## **BLANK PAGE** ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. The Periodic Table of Elements | | \text{\text{ }} | 2 | He | helium
4 | 10 | Ne | neon
20 | 18 | Ar | argon
40 | 36 | 첫 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | | | | |-------|-----------------|---|----|---------------|---------------|--------------|------------------------------|----|----|------------------|--------------|----|-----------------|---------------|----------|------------------|-----------------|-------------|-----------------|------------|-----------|--------------------|-------------|-----|----| | | = | | | | 6 | ட | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | B | bromine
80 | 53 | Н | iodine
127 | 85 | Αţ | astatine
- | | | | | | | | | > | | | | 80 | 0 | oxygen
16 | 16 | S | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Po | molonium
– | 116 | | livermorium
- | | | | | | > | | | | 7 | Z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | Ξ | bismuth
209 | | | | | | | | | ≥ | | | | | | | | 9 | ပ | carbon
12 | 14 | : <u>S</u> | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | lΗ | | | ≡ | | | | 2 | Ф | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 84 | <i>1</i> L | thallium
204 | | | | | | | | | | | | | | | | | | | 30 | Zn | zinc
65 | 48 | B | cadmium
112 | 80 | Нg | mercury
201 | 112 | S | copernicium
- | | | | | | | | | | | | | | | | 59 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | gold
197 | 111 | Rg | roentgenium
- | | | | | Group | | | | | | | | | | | 28 | Ż | nickel
59 | 46 | Pd | palladium
106 | 78 | Ŧ | platinum
195 | 110 | Ds | darmstadtium
- | | | | | Ö | | | | | 1 | | | | | | 27 | ပိ | cobalt
59 | 45 | 格 | rhodium
103 | 77 | i | iridium
192 | 109 | Ĭ | meitnerium
- | | | | | | | - | I | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 92 | Os | osmium
190 | 108 | Hs | hassium
- | | | | | | | | | | | | | 1 | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium | | | | | | | | | | | loq | name
relative atomic mass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≯ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | | | | | Key | atomic number | atomic symbo | | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | ā | tantalum
181 | 105 | В | dubnium | | | | | | | | | | | atc | re | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | 茔 | hafnium
178 | 104 | 꿆 | rutherfordium
- | | | | | | | | | | | | | ı | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | | | | = | | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ва | barium
137 | 88 | Ra | radium | | | | | | _ | | | | က | = | lithium
7 | 11 | Na | sodium
23 | 19 | × | potassium
39 | 37 | S
S | rubidium
85 | 55 | Cs | caesium
133 | 87 | Ļ | francium | | | | | | | | | | | _ | | |----|----|--------------|-----|-----|-----------|--------------|-----| | 71 | Ρſ | lutetium | 175 | 103 | ۲ | lawrencium | ı | | 20 | Υp | ytterbium | 173 | 102 | 9
N | nobelium | ı | | 69 | T | thulium | 169 | 101 | Md | mendelevium | ı | | 89 | щ | erbinm | 167 | 100 | Fm | ferminm | I | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | ı | | 99 | ò | dysprosium | 163 | 86 | ర్ | californium | ı | | 99 | Д | terbium | 159 | 26 | Æ | berkelium | 1 | | 64 | gg | gadolinium | 157 | 96 | Cm | curium | ı | | 63 | En | europium | 152 | 92 | Am | americium | ı | | 62 | Sm | samarium | 150 | 94 | Pu | plutonium | ı | | 61 | Pm | promethium | ı | 93 | ď | neptunium | 1 | | 09 | βN | neodymium | 144 | 92 | \supset | uranium | 238 | | 59 | Ā | praseodymium | 141 | 91 | Ра | protactinium | 231 | | 28 | Ce | cerium | 140 | 06 | Ч | thorium | 232 | | 22 | Га | lanthanum | 139 | 89 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).