

Cambridge IGCSE[™]

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	Ē
*			
8	CHEMISTRY		0620/41
3 2	Paper 4 Theory	(Extended)	May/June 2022
°			1 hour 15 minutes
3			
9	You must answe	er on the question paper.	
3 9			
¥	No additional m	atoriala ara naodad	

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper.

1 A list of substances is shown.

a	aluminium oxide	carbon dioxide	chlorine	diamond	ethanol	
	glucose	iron(III) oxide	limestone	nitrogen	oxygen	
Ans	swer the questions us	ing the list of substar	nces.			
Ead	ch substance may be	used once, more tha	in once or not a	t all.		
Sta	State which of the substances:					
(a)	is a reactant in photo	osynthesis				
					[1]	
(b)	is the main constitue	ent of bauxite				
()					[1]	
(c)	are two products of	fermentation				
			and			
(d)	is used as a fuel					
					[1]	
(e)	is a gas used to con	vert iron into steel				
					[1]	
(f)	is a greenhouse gas					
					[1]	
	· · · · · · · · · · · · · · · · · · ·					
(g)	is a gas that is appro	-			[4]	
					[1]	
(h)	is a form of carbon.					
					[1]	
					[Total: 9]	

- 2 (a) Atoms are made of protons, neutrons and electrons. Atoms of the same element are known as isotopes.
 - (i) Complete the table.

particle	relative charge	relative mass
electron		<u>1</u> 1840
neutron		
proton	+1	

[2]

(ii) ${}^{24}_{12}$ Mg and ${}^{25}_{12}$ Mg are isotopes of magnesium.

Complete the table to show the numbers of electrons, neutrons and protons in these isotopes of magnesium.

isotope	number of electrons	number of neutrons	number of protons
²⁴ ₁₂ Mg			
²⁵ ₁₂ Mg			

[2]

(iii) Explain why magnesium ions have a charge of 2+.

	F 4 1

(b) Mg^{2+} ions have the electronic structure 2,8.

Give the formula of the following particles which have the same electronic structure as Mg²⁺ ions.

• a cation (positive ion)

.....

- an anion (negative ion)
-
- an atom

.....

[3]

[Total: 8]

- **3** This question is about sodium and compounds of sodium.
 - (a) (i) Describe the bonding in a metallic element such as sodium.

You may include a diagram as part of your answer.

		[3]
(ii)	Describe how solid sodium conducts electricity.	
		[1]
(b) Soi	me properties of sodium chloride are shown:	
• • •	melting point of 801 °C non-conductor of electricity when solid conductor of electricity when molten soluble in water.	
(i)	Name the type of bonding in sodium chloride.	
		[1]
(ii)	Explain why sodium chloride conducts electricity when molten.	
		[1]

- (c) A student determines the concentration of a solution of dilute sulfuric acid, H₂SO₄, by titration with aqueous sodium hydroxide, NaOH.
 - step 1 25.0 cm³ of 0.200 mol/dm³ NaOH is transferred into a conical flask.
 - step 2 Three drops of methyl orange indicator are added to the conical flask.
 - **step 3** A burette is filled with H_2SO_4 .
 - **step 4** The acid in the burette is added to the conical flask until the indicator changes colour. The volume of acid is recorded. This process is known as titration.
 - step 5 The titration is repeated several times until a suitable number of results is obtained.
 - (i) Name the piece of apparatus used to measure exactly 25.0 cm³ of 0.200 mol/dm³ NaOH in **step 1**.
 -[1]
 - (ii) State the colour change of the methyl orange indicator in **step 4**.
 - from [1]
 - (iii) State how the student decides that a suitable number of results have been obtained.

(iv) $20.0 \text{ cm}^3 \text{ of } \text{H}_2\text{SO}_4 \text{ reacts with } 25.0 \text{ cm}^3 \text{ of } 0.200 \text{ mol/dm}^3 \text{ NaOH}.$

The equation for the reaction is shown.

$$H_2SO_4$$
 + 2NaOH \rightarrow Na₂SO₄ + 2H₂O

Calculate the concentration of H_2SO_4 using the following steps.

• Calculate the number of moles in 25.0 cm³ of 0.200 mol/dm³ NaOH.

..... mol

• Determine the number of moles of H_2SO_4 that react with the NaOH.

..... mol

• Calculate the concentration of H₂SO₄.

..... mol/dm³ [3]

[Total: 12]

4 This question is about compounds of sulfur.

(a)		ulfuric acid, H ₂ SO ₄ , is manufactured using the Contact process. This manufacture involves ur stages.	
	sta	ge 1	Molten sulfur burns in air to produce sulfur dioxide.
	sta	ge 2	Sulfur dioxide reacts with oxygen to form sulfur trioxide.
	sta	ge 3	Sulfur trioxide combines with concentrated sulfuric acid to form oleum, $H_2S_2O_7$.
	sta	ge 4	Oleum reacts to form concentrated sulfuric acid.
	(i)	Write	a chemical equation for the reaction occurring in stage 1 .
	(ii)		the essential conditions that are necessary for stage 2 . Write an equation for the ical reaction that occurs.
			[4]
	(iii)	Write	a chemical equation for the reaction occurring in stage 3.
			[1]
	(iv)	Name	e the substance that reacts with oleum in stage 4 .

- (b) Hydrogen sulfide has the formula H_2S .
 - (i) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of hydrogen sulfide. Show outer shell electrons only.

[2]

(ii) Balance the chemical equation for the reaction of hydrogen sulfide with sulfur dioxide shown.

$$\dots H_2S + SO_2 \rightarrow \dots S + \dots H_2O$$
 [1]

[Total: 10]

5 Ethanoic acid is manufactured by the reaction of methanol with carbon monoxide.

An equilibrium mixture is produced.

 $CH_3OH(g) + CO(g) \rightleftharpoons CH_3COOH(g)$

	effect on the rate of the forward reaction	effect on the equilibrium yield of CH ₃ COOH(g)
adding a catalyst		no change
decreasing the pressure		

[3]

(d) Suggest which of the following metals is a suitable catalyst for the reaction. Give a reason for your answer.

	aluminium	calcium	cobalt	magnesium	potassium
suita	ble catalyst				
reas	on				
					[2]

(e) Ethanoic acid is a member of the homologous series of carboxylic acids.

State the general formula of this homologous series.

......[1]

(f) Draw the structure of the carboxylic acid containing three carbon atoms. Show all of the atoms and all of the bonds.

```
[2]
```

(g) When carboxylic acids react with alcohols, esters are produced.

The formula of ester **X** is $CH_3CH_2CH_2COOCH_3$.

- (i) Name ester X.
- (h) Ester Y has the following composition by mass:

C, 48.65%; H, 8.11%; O, 43.24%.

Calculate the empirical formula of ester Y.

empirical formula = [3]

(i) Ester **Z** has the empirical formula C_2H_4O and a relative molecular mass of 88.

Determine the molecular formula of ester $\ensuremath{\textbf{Z}}.$

molecular formula = [1]

[Total: 19]

- 6 This question is about zinc and its compounds.
 - (a) Zinc is extracted from its ore which is mainly zinc sulfide, ZnS.

The steps for this extraction are shown.

- **step 1** Zinc sulfide is converted into zinc oxide.
- **step 2** The zinc oxide is then reduced to zinc in a furnace. The zinc formed becomes a gas.
- **step 3** The zinc gas is cooled to form molten zinc.
- (i) Name the ore of zinc, which is mainly zinc sulfide.
 -[1]
- (ii) Describe how zinc sulfide is converted into zinc oxide in step 1.

-[1]
- (iv) Explain why the zinc forms a gas in **step 2** inside the furnace.

......[1]

(v) State the name of the physical change occurring when zinc gas is converted into molten zinc.

(b) Zinc sulfate crystals, $ZnSO_4 \cdot 7H_2O$, are hydrated.

(iii) Name the reducing agent used in **step 2**.

Zinc sulfate crystals are made by reacting zinc carbonate with dilute sulfuric acid.

The equation for the overall process is shown.

 $ZnCO_3 \ + \ H_2SO_4 \ + \ 6H_2O \ \rightarrow \ ZnSO_4 \bullet 7H_2O \ + \ CO_2$

- **step 1** Large pieces of solid zinc carbonate are added to dilute sulfuric acid until the zinc carbonate is in excess. This forms aqueous zinc sulfate.
- **step 2** The excess zinc carbonate is separated from the aqueous zinc sulfate.
- **step 3** The aqueous zinc sulfate is heated until a saturated solution is formed.
- **step 4** The saturated solution is allowed to cool and crystallise.
- **step 5** The crystals are removed and dried.

(i)	In step 1 , zinc carbonate is in excess when no more zinc carbonate dissolves.
	State one other observation that indicates the zinc carbonate is in excess in step 1 .
(ii)	Name a different substance, other than zinc carbonate, that can be added to dilute sulfuric acid to produce aqueous zinc sulfate in step 1 .
(iii)	Step 1 is repeated using powdered zinc carbonate instead of large pieces.
	All other conditions are kept the same.
	The rate of reaction increases.
	Give a reason why the rate of reaction increases. Explain your answer in terms of particles.
(iv)	Suggest what is observed when the solution is saturated in step 3 .
(v)	The formula of zinc sulfate crystals is $ZnSO_4 \cdot 7H_2O$.
	Give the formula of the solid formed if the crystals are heated to dryness in step 3 .

[Total: 11]

- 7 The Periodic Table can be used to classify elements.
 - (a) Group I elements react with cold water to form alkaline solutions.
 - (i) Place the Group I elements caesium, lithium, potassium, rubidium and sodium in their order of reactivity with water.

Put the most reactive element first.

most reactive	>	least reactive
		[1]

(ii) Name the alkaline solution formed when caesium reacts with cold water.

......[1]

(b) Group I elements have lower melting points than transition elements.

Describe one **other** difference in the **physical** properties of Group I elements and transition elements.

[1]

(c) Group VII elements are known as the halogens.

Astatine is below iodine in Group VII.

Predict the physical state of astatine at room temperature and pressure.

......[1]

(d) Some Group VII elements react with aqueous solutions containing halide ions.

When aqueous chlorine is added to aqueous potassium bromide a reaction occurs.

The ionic half-equations for the reaction are shown.

$$Cl_2(aq) + 2e^- \rightarrow 2Cl^-(aq)$$

 $2Br^-(aq) \rightarrow Br_2(aq) + 2e^-$

- (i) Describe the colour change of the solution.

(ii) Identify the species that is oxidised.

Explain your decision.

(e) Bromine monochloride, BrC*l*, is made by the reaction between bromine and chlorine. The chemical equation is shown.

bond	bond energy in kJ/mol
Br–Br	190
C <i>l</i> –C <i>l</i>	242
Br–Cl	218

 $Br_2(g) + Cl_2(g) \rightarrow 2BrCl(g)$

Calculate the overall energy change for the reaction using bond energies.

Use the following steps.

 Calculate the total amount of energy required to break the bonds in 1 mole of Br₂(g) and 1 mole of Cl₂(g).

..... kJ

• Calculate the total amount of energy released when the bonds in 2 moles of BrC*l*(g) are formed.

..... kJ

• Calculate the overall energy change for the reaction.

..... kJ/mol [3]

[Total: 11]

BLANK PAGE

14

BLANK PAGE

15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

103 Lr lawrencium

102 No nobelium

100 Fm

99 ES einsteinium

98 Cf californium

97 **BK** berkelium

 $^{96}_{\text{curium}}$

95 Am americium

94 Pu plutonium

93 Np neptunium

92 U ^{uranium} 238

91 Pa 231

90 Th thorium 232

89 AC actinium

actinoids

101 Md mendelevium

© UCLES 2022

								Gr	Group								
_	=											≡	≥	>	>	١١	VIII
																	7
				Kev			hydrogen										helium ,
							-					l		,			4
	4			atomic number								ŝ	9	7	œ	თ	10
	Be		ato	atomic symbol								ш	ပ	z	0	ш	Ne
lithium 7	beryllium 9		rela	name relative atomic mass	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
	12											13	14	15	16	17	18
Na	Mg											Al	Si	۵.	ა	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
×	Ca	Sc	F	>	ŗ	Mn	Fе	ပိ	ïŻ	Cu	Zn	Ga	Ge	As	Se	Ъ	Кr
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Ś	≻	Zr	qN	Mo	Ъ	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Te	П	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57-71	72	73	74	75	76	17	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Η	Та	\geq	Re	Os	Ir	Ę	Au	Hg	11	Pb	E	Ъо	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon -
87	88	89-103	104	105	106		108	109	110	111	112		114		116		
г Ц	Ra	actinoids	Ŗ	Db	Sg		Hs	Mt	Ds	Rg	C		Fl		L<		
francium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium -		
		57	58	59	60	61	62	63	64	65	66	67	68	69	20	71	_
lanthanoids	ds	La		۲. ۲		E E	Sm	Ъ	Ю Э	a : T	D ,	Η	ц Ш	E H	d Z	Lu L	
		lanthanum 139	cenum 140	praseodymium 141	neodymium 144	promethium -	150 150	europium 152	gadolinium 157	159	dysprosium 163	165	eroium 167	169	ytterbium 173	175	

0620/41/M/J/22

The Periodic Table of Elements