

Cambridge IGCSE[™]

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/42
Paper 4 Theory	r (Extended)		May/June 2022
			1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 The symbols of the elements of Period 3 of the Periodic Table are shown.

Na	Mg	Al	Si	Р	S	Cl	Ar	
								1

Answer the following questions about these elements. Each symbol may be used once, more than once or not at all. Write the symbol of the element which:

(a) f	forms a stable ion with a 2+ charge	[1]
(b) i	is the least reactive in the period	[1]
(c) i	is used in water treatment	[1]
(d) f	forms an oxide which is the main impurity in iron ore	[1]
(e) i	is an important component of fertilisers	[1]
(f) i	is stored under oil	[1]
(g) i	is used in food containers	[1]
(h) is	is found in the ore zinc blende	[1]
	[Total	: 8]

Question 2 starts on the next page.

(i)	Write the chemical equation for this reaction.
(ii)	Name another substance that reacts with water to form calcium hydroxide.
	nen calcium hydroxide dissolves in water, it dissociates into ions and forms a weakly alka ution.
(i)	Suggest the pH of aqueous calcium hydroxide.
(ii)	Give the formula of the ion responsible for making the solution alkaline.
(c) Lin	newater is a saturated solution of calcium hydroxide, $Ca(OH)_2(aq)$.
(i)	Name the gas limewater is used to test for.
(1)	Name the gas limewater is used to test for.
(I) (II)	
	-
	Suggest what is meant by the term <i>saturated solution</i> .
	Suggest what is meant by the term <i>saturated solution</i> .
(ii)	Suggest what is meant by the term <i>saturated solution</i> .
(ii)	Suggest what is meant by the term <i>saturated solution</i> . Describe how you would make a sample of limewater starting with solid calcium hydrox
(ii) (iii)	Suggest what is meant by the term <i>saturated solution</i> . Describe how you would make a sample of limewater starting with solid calcium hydrox
(ii)	Suggest what is meant by the term <i>saturated solution</i> . Describe how you would make a sample of limewater starting with solid calcium hydrox

5

- (d) A 25.0 cm³ sample of limewater is placed in a conical flask. The concentration of Ca(OH)₂ in the limewater is determined by titration with dilute hydrochloric acid, HC*l*.
 - (i) Name the item of apparatus used to measure the volume of acid in this titration.
 -[1]
 - (ii) State the type of reaction which takes place.
 -[1]
 - (iii) As well as limewater and dilute hydrochloric acid, state what other type of substance must be added to the conical flask.
 -[1]
 - (iv) The equation for the reaction is shown.

 $Ca(OH)_2$ + 2HC $l \rightarrow CaCl_2$ + 2H₂O

20.0 cm³ of 0.0500 mol/dm³ HCl reacts with the 25.0 cm³ of Ca(OH)₂.

Determine the concentration of $Ca(OH)_2$ in g/dm³. Use the following steps.

• Calculate the number of moles in 20.0 cm³ of 0.0500 mol/dm³ HCl.

..... mol

• Determine the number of moles of Ca(OH)₂ in 25.0 cm³ of the limewater.

..... mol

• Calculate the concentration of Ca(OH)₂ in mol/dm³.

..... mol/dm³

• Determine the concentration of Ca(OH)₂ in g/dm³.

..... g/dm³ [5]

[Total: 21]

6

- **3** Transition elements are found in the middle block of the Periodic Table.
 - (a) Chromium has several isotopes. Manganese has only one isotope.
 - (i) State what is meant by the term *isotopes*.

- (ii) State the nucleon number of manganese.
 -[1]
- (iii) Complete the table to show the number of protons, neutrons and electrons in a ${}^{52}_{24}$ Cr³⁺ ion.

protons	neutrons	electrons

[3]

[2]

- (b) One chemical property of transition elements is that they form coloured compounds.
 - (i) Give the colours of the following hydrated salts.

•	hydrated copper(II) sulfate	
---	-----------------------------	--

- hydrated cobalt(II) chloride
- (ii) State two other chemical properties of transition elements.
 - 1 2 [2]
- (c) Transition elements and Group I elements are metals. They share many physical properties including the ability to:
 - conduct electricity
 - be hammered into shape.
 - (i) Explain why transition elements and Group I elements conduct electricity.
 -[1]
 - (ii) State the property that describes a material which can be hammered into shape.

(d) Transition elements and Group I elements differ in other physical properties. Transition elements are harder and stronger than Group I elements.

Describe two **other** ways in which the physical properties of transition elements differ from Group I elements.

1	
2	

[Total: 14]

[2]

- 4 Fluorine and chlorine are halogens.
 - (a) Suggest the appearance of fluorine. [1]
 - (b) Fluorine reacts with sulfur to form a compound which has 25.2% sulfur by mass and a relative molecular mass of 254.

Determine the molecular formula of this compound.

molecular formula =[3]

(c) Nitrogen trichloride, NCl_3 , is a covalent compound.

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of NCl_3 . Show outer electrons only.

[3]

(d) Lithium chloride, LiC*l*, is an ionic compound.

Complete the dot-and-cross diagram to show the electron arrangement and charges of the ions in lithium chloride.

9

(e) Explain, in terms of attractive forces between particles, why LiCl is a solid at room temperature but NC l_3 is a liquid with a relatively low boiling point.

[3] [Total: 13] **5** The reaction scheme shows five organic reactions, numbered 1 to 5.

(e)	Ethanol is oxidised in reaction	5 by heating it with dilute sulfuric acid and one ot	ner reagent.
-----	---------------------------------	--	--------------

(i)	Identify the other reagent in reaction 5.	
		[1]
(ii)	Name the homologous series compound C belongs to.	
		[1]
(iii)	Draw the structure of compound C .	
	Show all of the atoms and all of the bonds.	

[1]

[Total: 15]

- 6 This question is about polymers.
 - (a) Polymer X is a condensation polymer.

Part of the structure of polymer **X** is shown.

(i) How many molecules of water are produced when this part of polymer **X** is formed from its monomers?

......[1]

(ii) Complete the structures of the two monomers used to make polymer X.

Show all of the atoms and all of the bonds in the functional groups.

(c) Part of polymer Z has the structure shown.

(i) Draw and name the structure of the monomer which forms polymer Z.

Show all of the atoms and all of the bonds.

name

[3]

(ii) Name the chemical process used to make the monomer that forms polymer Z.

[Total: 9]

BLANK PAGE

BLANK PAGE

15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

awrencium L 103

mendelevium

102 No nobelium

100 Fm fermium

99 ES einsteinium

98 Cf californium

97 **BK** berkelium

 ${}^{96}_{\text{curium}}$

94 Pu plutonium

93 Np neptunium

uranium 238

91 Pa protactinium 231

90 Th ^{thorium} 232

89 Ac actinium I

mericium Am 95

© UCLES 2022

The Periodic Table of Elements

	VIII	² He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Кr	krypton 84	54	Xe	xenon 131	86	Rn	radon -									
	VII			-					chlorine 35.5				-										71	Lu	Iutetium 175	103	L
	N			┝			-		sulfur 32				-			+			116	۲<	ermorium -				/tterbium 173		No
	>			-					phosphorus 31							+					E				~	-	Мd
	\geq			-					silicon pho 28							+			-	1=	ovium –		-			-	Em
				┝												+				_	fler		-				
	=			2	ш	bor 11	1	4	aluminium 27				-			+					E		-			-	Es
										30	Zn	zinc 65	48	Cd	cadmium	80	Ηg	mercury 201	112	C	coperniciur -		66	0	dysprosiun 163	98	Ç
										29	Cu	copper 64	47	Ag	silver	62	Au	gold 197	111	Rg	roentgenium -		65	Tb	terbium 159	97	Bk
dn										28	ïZ	nickel 59	46	Pd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium -		64	Ъд	gadolinium 157	96	Cm
Group										27	ပိ	cobalt 59	45	Rh	rhodium 103	201	Ir	iridium 192	109	Mt	meitnerium -		63	Еu	europium 152	95	Am
		- I	hydrogen 1							26	Бе	iron 56	44	Ru	nuthenium 101	76	Os	osmium 190	108	Hs	hassium -	-	62	Sm	samarium 150	94	Pu
										25	Mn	manganese 55	43	Ч	technetium	75	Re	rhenium 186	107	Bh	bohrium –	-		Рш	d		Np
					loc	SS				24	ŗ	chromium 52	42	Mo	molybdenum	74	8	tungsten 184	106	Sg	seaborgium -		60	Nd	neodymium 144	92	
			Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 03	73	Та	tantalum 181	105	Db	dubnium –			Pr	m		Ра
				0	ato	rela				22	F	titanium 48	40	Zr	zirconium 01	72	Ŧ	hafnium 178	104	Ŗ	rutherfordium —	•	58	Ce			Th
							_			21	Sc	scandium 45	39	≻	yttrium 80	57-71	lanthanoids		89-103	actinoids			57	La	lanthanum 139	89	Ac
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي ا	strontium 88	56	Ba	barium 137	88	Ra	radium -						
	_			ę	:	lithium 7			sodium 23		×	potassium 39	37	Rb	rubidium 86	55	Cs	caesium 133	87	Ľ	francium -			lanthanoids			actinoids

0620/42/M/J/22