

ADDITIONAL MATHEMATICS

0606/22 March 2019

Paper 22 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
  is given for valid answers which go beyond the scope of the syllabus and mark scheme,
  referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

### MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

#### **Types of mark**

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

#### Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

#### 0606/22

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | Partial Marks                                                                                                                                                                                                   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(i)     | 1081575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1    |                                                                                                                                                                                                                 |
| 1(ii)    | 40320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1    |                                                                                                                                                                                                                 |
| 1(iii)   | 2730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1    |                                                                                                                                                                                                                 |
| 2(i)     | $\frac{\mathrm{d}}{\mathrm{d}x} \frac{(\ln x)}{x} = \frac{1}{x},  \frac{\mathrm{d}}{\mathrm{d}x} \frac{(\mathrm{e}^x)}{x} = \mathrm{e}^x \text{ soi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2    | <b>B1</b> for each                                                                                                                                                                                              |
|          | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{x} \times their \frac{1}{x} - (\ln x) \times their \mathrm{e}^{x}}{\left(\mathrm{e}^{x}\right)^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1    |                                                                                                                                                                                                                 |
|          | correct completion to given answer,<br>$\frac{dy}{dx} = \frac{1 - x \ln x}{xe^x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1    |                                                                                                                                                                                                                 |
| 2(ii)    | $\delta y = \left(\frac{1 - 2\ln 2}{2e^2}\right) \times h \text{ soi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1    |                                                                                                                                                                                                                 |
|          | -0.0261[] <i>h</i> isw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1    |                                                                                                                                                                                                                 |
| 3(i)     | Fully correct curve<br>$\begin{array}{c c}  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\ $ | Β3    | <ul> <li>B1 for correct shape for sine with <i>y</i>-intercept at -1</li> <li>B1 for curve with period 120°</li> <li>B1 for curve with amplitude 5</li> <li>Maximum of 2 marks if not fully correct.</li> </ul> |
| 3(ii)    | a = -1 $b = 5$ $c = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B2    | <b>B1</b> for any 2 correct                                                                                                                                                                                     |
| 4(a)     | Expands, rearranges to form a<br>3-term quadratic on one side<br>$4x^2 + x - 3[*0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1    |                                                                                                                                                                                                                 |
|          | Critical values $\frac{3}{4}$ and $-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1    |                                                                                                                                                                                                                 |
|          | $-1 \leq x \leq \frac{3}{4}$ final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1    | FT <i>their</i> critical values                                                                                                                                                                                 |

| Question | Answer                                                                                                                                                                        | Marks | Partial Marks                                                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(b)     | $k^2 - 4\left(\frac{1}{4}\right)\left(k^2 + 1\right)$                                                                                                                         | M1    |                                                                                                                                                                      |
|          | -1                                                                                                                                                                            | A1    |                                                                                                                                                                      |
|          | discriminant independent of k and negative oe                                                                                                                                 | A1    | <b>FT</b> <i>their</i> –1                                                                                                                                            |
| 5        | $[m_{AB} =] \frac{2+4}{3-7}$ oe or $-\frac{3}{2}$ soi                                                                                                                         | M1    |                                                                                                                                                                      |
|          | $[m_{CD} =] their \frac{2}{3}$ oe, soi                                                                                                                                        | M1    |                                                                                                                                                                      |
|          | <i>their</i> $\frac{2}{3} = \frac{3+3}{k-2}$ oe or<br>3+3 = <i>their</i> $\frac{2}{3}(x-2)$ oe                                                                                | M1    |                                                                                                                                                                      |
|          | $\frac{3}{k = 11 \text{ nfww}}$                                                                                                                                               | A1    |                                                                                                                                                                      |
|          | $\left(\frac{(their11)+2}{2},\frac{3+-3}{2}\right) \text{ oe}$                                                                                                                | M1    |                                                                                                                                                                      |
|          | $y = -\frac{3}{2}(x - 6.5)$ oe isw                                                                                                                                            | A1    | <b>FT</b> <i>their</i> $m_{AB}$ and ( <i>their</i> 6.5, 0)                                                                                                           |
| 6(i)     | Takes logs, to any base, of both sides and applies<br>the addition/multiplication law for logs<br>$\ln y = \ln(Ab^x) \Rightarrow \ln y = \ln A + \ln b^x$                     | M1    |                                                                                                                                                                      |
|          | $\Rightarrow \ln y = \ln A + x \ln b$                                                                                                                                         | A1    |                                                                                                                                                                      |
| 6(ii)    | $\ln y = 1.4x + 2.2 \text{ oe} \text{or } \ln y = x \ln 4 + \ln 9 \text{ oe}$                                                                                                 | B2    | <b>B1</b> for either $m = 1.4$ or $\ln b = 1.4$ or $c = 2.2$ or $\ln A = 2.2$                                                                                        |
|          | $[A = e^{their 2.2} =] 9$ and<br>$[b = e^{their 1.4} =] 4$                                                                                                                    | B2    | <b>FT</b> <i>their</i> 2.2 and <i>their</i> 1.4<br><b>B1 FT</b> for $A = e^{their 2.2}$ or $b = e^{their 1.4}$ or<br>correct FT decimal rounded to more<br>than 1 sf |
| 6(iii)   | ln y = 6<br>or $y = their9(their4^{2.7})$<br>or $y = e^{their2.2}(e^{their1.4\times2.7})$<br>or $ln y = their1.4(2.7) + their2.2$<br>or $ln y = (2.7)ln(their4) + ln(their9)$ | M1    |                                                                                                                                                                      |
|          | awrt 400 correct to 1 sf                                                                                                                                                      | A1    |                                                                                                                                                                      |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                           | Marks    | Partial Marks                                                                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(i)     | $\frac{d}{dx}\left(\sqrt{x^{2}+1}\right) = \frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}} \times 2x$                                                                                                                                                                                                                                                             | B2       | <b>B1</b> for $\frac{d}{dx}(\sqrt{x^2+1}) = kx(x^2+1)^{-\frac{1}{2}}$<br>where $k \neq 1$                                                                 |
|          | $\sqrt{x^{2}+1}$ $+ x \times their\left(\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}} \times 2x\right)$                                                                                                                                                                                                                                                         | M1       |                                                                                                                                                           |
|          | $\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{2x^2 + 1}{\left(x^2 + 1\right)^{\frac{1}{2}}}$<br>or $a = 2, b = 1, p = \frac{1}{2}$ nfww                                                                                                                                                                                                                  | A1       |                                                                                                                                                           |
| 7(ii)    | Complete argument<br>e.g. For stationary points $\frac{dy}{dx} = 0$ and when <i>a</i> and<br><i>b</i> are positive, $ax^2 + b$ cannot be 0<br>or $2x^2$ cannot be $-1$                                                                                                                                                                                           | B2       | <b>FT</b> <i>their</i> positive <i>a</i> and <i>b</i><br><b>B1 FT</b> for a partially correct argument<br>e.g. Because $\frac{dy}{dx}$ cannot be 0.       |
| 8(i)     | 6i - 4j - (2i + 12j) oe<br>4i - 16j oe, isw                                                                                                                                                                                                                                                                                                                      | M1<br>A1 |                                                                                                                                                           |
| 8(ii)    | $\left[\overrightarrow{OC} = \right]\overrightarrow{OA} + \frac{1}{4}\overrightarrow{AB} \text{ oe}$<br>or $\left[\overrightarrow{OC} = \right]\overrightarrow{OB} - \frac{3}{4}\overrightarrow{AB}$ oe<br>or $\left[\overrightarrow{OC} = \right]\frac{1}{4}\overrightarrow{OB} + \frac{3}{4}\overrightarrow{OA}$ oe<br>or $3(x-2) = 6-x$ and<br>3(y-12) = -4-y | M1       |                                                                                                                                                           |
|          | $3\mathbf{i} + 8\mathbf{j}$ oe<br>$\left \overrightarrow{OC}\right  = \sqrt{their3^2 + their8^2}$                                                                                                                                                                                                                                                                | A1<br>M1 |                                                                                                                                                           |
|          | their $\frac{3\mathbf{i}+8\mathbf{j}}{\sqrt{73}}$                                                                                                                                                                                                                                                                                                                | A1       | <b>FT</b> <i>their</i> $3\mathbf{i} + 8\mathbf{j}$ and <i>their</i> $\sqrt{73}$                                                                           |
| 8(iii)   | $-\frac{\lambda}{1+\lambda}(2\mathbf{i}+12\mathbf{j})$ oe, isw                                                                                                                                                                                                                                                                                                   | B2       | <b>B1</b> for $\frac{\lambda}{1+\lambda} (2\mathbf{i}+12\mathbf{j})$ seen or<br>$\overrightarrow{OD} = \frac{1}{1+\lambda} (2\mathbf{i}+12\mathbf{j})$ oe |

| Question  | Answer                                                                                                                                                     | Marks | Partial Marks                                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 9(a)(i)   | Valid explanation e.g.<br>Each $x$ is mapped to a unique value of $y$ [and so g is a function] but the inverse does not exist because it is many to one oe | B2    | <b>B1</b> for either each x is mapped to a unique value of y oe or for inverse does not exist because it is many to one oe       |
| 9(a)(ii)  | $\begin{bmatrix} g^2(x) = \end{bmatrix}  6(6x^4 + 5)^4 + 5 \text{ isw}$<br>for all real x                                                                  | B2    | <b>B1</b> for $[g^2(x) = ] 6(6x^4 + 5)^4 + 5$ isw<br><b>B1</b> for correct domain                                                |
| 9(a)(iii) | [ <i>k</i> = ] 0                                                                                                                                           | B1    |                                                                                                                                  |
| 9(a)(iv)  | $x^4 = \frac{y-5}{6}$ soi                                                                                                                                  | M1    | or $y^4 = \frac{x-5}{6}$                                                                                                         |
|           | $x = \pm \sqrt[4]{\frac{y-5}{6}}$                                                                                                                          | A1    | or $y = \pm \sqrt[4]{\frac{x-5}{6}}$                                                                                             |
|           | $h^{-1}(x) = -\sqrt[4]{\frac{x-5}{6}}$                                                                                                                     | A1    | If <b>M1 A0 A0</b> , allow <b>SC1</b> for an answer<br>of $h^{-1}(x) = \sqrt[4]{\frac{x-5}{6}}$ or $y = \sqrt[4]{\frac{x-5}{6}}$ |
| 9(b)(i)   | p > 2                                                                                                                                                      | B1    |                                                                                                                                  |
| 9(b)(ii)  | For p:<br>Correct exponential shape tending to $y = 2$<br>passing through (0, 5)                                                                           | B2    | B1 for each                                                                                                                      |
|           | For the inverse function:<br>Approximate reflection of p in the dotted line<br>passing through<br>( <i>their</i> 5, 0)                                     | B1    |                                                                                                                                  |
| 9(b)(iii) | Valid explanation e.g.<br>The graphs do not intersect and so there are no<br>solutions oe                                                                  | B1    |                                                                                                                                  |
| 10(i)     | Eliminates x or y e.g.<br>$3x + 3 = x + 5\sqrt{x} + 1$<br>or $3 + 3u^2 = u^2 + 5u + 1$                                                                     | M1    |                                                                                                                                  |
|           | Rearranges to a 3-term quadratic e.g.<br>$0 = 2x - 5\sqrt{x} + 2$<br>or $0 = 2u^2 - 5u + 2$                                                                | A1    |                                                                                                                                  |
|           | Factorises or solves $0 = 2x - 5\sqrt{x} + 2$ oe<br>or $0 = 2u^2 - 5u + 2$ oe                                                                              | M1    |                                                                                                                                  |
|           | $\sqrt{x} = 0.5$ , $\sqrt{x} = 2$<br>or $u = 0.5$ , $u = 2$                                                                                                | A1    |                                                                                                                                  |

| Question | Answer                    | Marks | Partial Marks                             |
|----------|---------------------------|-------|-------------------------------------------|
|          | A(0.25, 3.75) B(4, 15) oe | A2    | A1 for each or for $x = 0.25$ and $x = 4$ |

#### 0606/22

| Question | Answer                                                                                                                                            | Marks | Partial Marks                                                                                                                |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| 10(ii)   | Method 1: Finding the area of the trapezium and subtracting                                                                                       |       |                                                                                                                              |  |  |
|          | Valid method to find the area of the trapezium soi                                                                                                | M1    |                                                                                                                              |  |  |
|          | $\frac{1125}{32} \text{ or } 35\frac{5}{32} \text{ or } 35.2 \text{ or } 35.15625 \text{ rot to 4 or} $<br>more figs, soi                         | A1    |                                                                                                                              |  |  |
|          | Attempts to integrate<br>$\int_{their0.25}^{their4} (x + 5\sqrt{x} + 1) dx [-their35.2]$                                                          | M1    |                                                                                                                              |  |  |
|          | $\left[\frac{x^2}{2} + \frac{5x^2}{\frac{3}{2}} + x\right]_{their0.25}^{their4} [-their35.2] \text{ oe}$                                          | A1    |                                                                                                                              |  |  |
|          | F(their 4) – F(their 0.25) [–their 35.2]                                                                                                          | M1    |                                                                                                                              |  |  |
|          | $\frac{45}{16} \text{ or } 2\frac{13}{16} \text{ or } 2.8125 \text{ isw}$<br>or 2.81, or 2.812                                                    | A1    |                                                                                                                              |  |  |
|          | Method 2: Finding the difference of two integrals                                                                                                 |       |                                                                                                                              |  |  |
|          | Attempts to integrate<br>$\int_{their0.25}^{their4} (x + 5\sqrt{x} + 1 - (3 + 3x)) dx$ or $\int_{their0.25}^{their4} (-2x + 5\sqrt{x} - 2) dx$ oe | M2    | M1 for an attempt to form the difference with at most one error and attempts to integrate                                    |  |  |
|          | $\left[ their \left( \frac{-2x^2}{2} + \frac{5x^2}{\frac{3}{2}} - 2x \right) \right]_{their 0.25}^{their 4} \text{ oe}$                           | A1    | <b>FT</b><br>dep on at least M1 already awarded;<br>must be at least 3 terms and, if FT, must<br>be of equivalent difficulty |  |  |
|          | F(their 4) - F(their 0.25)                                                                                                                        | M1    |                                                                                                                              |  |  |
|          | $\frac{45}{16}$ or $2\frac{13}{16}$ or 2.81, 2.812 or 2.8125                                                                                      | A2    |                                                                                                                              |  |  |

| Question  | Answer                                                                                             | Marks | Partial Marks                                       |
|-----------|----------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|
| 11(a)     | $\frac{x^2(x^6+1)}{x^6} = x^2 + \frac{1}{x^4}$ soi                                                 | B1    |                                                     |
|           | $\frac{x^3}{3} + \frac{x^{-3}}{-3} + c$ oe, isw                                                    | B2    | <b>B1</b> for any two out of three terms correct    |
| 11(b)(i)  | $k\sin(4\theta - 5)$ where<br>$k > 0$ or $k = -\frac{1}{4}$                                        | M1    |                                                     |
|           | $\frac{\sin(4\theta-5)}{4}(+c)$                                                                    | A1    |                                                     |
| 11(b)(ii) | $\frac{\sin(4(2)-5)}{4} - \frac{\sin(4(1.25)-5)}{4}$<br>or $\frac{\sin(3)}{4} - \frac{\sin(0)}{4}$ | M1    | FT <i>their</i> (b)(i), dep on M1 awarded in (b)(i) |
|           | 0.0353 or 0.03528[] oe, cao                                                                        | A1    |                                                     |