

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
*			
2 1	CHEMISTRY		0620/31
1 9	Paper 3 Theory	/ (Core)	October/November 2018
∞			1 hour 15 minutes
7 6 2	Candidates ans	wer on the Question Paper.	
1 4 4	No Additional M	aterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 16. You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 16 printed pages.

1 (a) The electronic structures of five atoms, A, B, C, D and E, are shown.

Answer the following questions about these structures. Each structure may be used once, more than once or not at all. State which structure, **A**, **B**, **C**, **D** or **E**, represents:

(i)	an atom of a metallic element	[1]
(ii)	an atom with a proton number of 13	[1]
(iii)	an atom of phosphorus	[1]
(iv)	an atom with only two shells of electrons	[1]
(v)	an atom which forms a stable ion with a single negative charge	[1]

(b) Complete the table to show the number of electrons, neutrons and protons in the carbon atom and potassium ion shown.

	number of electrons	number of neutrons	number of protons
¹⁴ ₆ C	6		
⁴⁰ ₁₉ K ⁺		21	

[3]

[Total: 8]

ion present	formula of ion	mass present in the 1000 cm ³ sample/g			
sodium	Na⁺	3.25			
potassium	K ⁺	0.16			
calcium	Ca ²⁺	0.10			
magnesium	Mg ²⁺	0.04			
chloride	Cl⁻	3.65			
hydrogencarbonate	HCO₃ [−]	1.50			
phosphate	PO ₄ ³⁻	0.64			
sulfate	SO ₄ ²⁻	0.10			

2 (a) The table shows the ions present in a $1000 \,\mathrm{cm^3}$ sample of blood plasma.

Answer these questions using only information from the table.

(i) Which positive ion is present in the lowest concentration?

		[1]
(ii)	Give the name of the compound formed from K^+ and Cl^- ions.	
		[1]

(iii) Calculate the mass of potassium ions present in 200 cm³ of this blood plasma.

mass of potassium ions = g [1]

(iv) When the 1000 cm³ sample of blood plasma is crystallised, several compounds are formed.
 Suggest the name of the compound which forms the greatest mass of crystals.

......[1]

(b) Describe a test for potassium ions.

test result[2] (c) Blood plasma also contains proteins. Proteins are present in food.

Which **one** of the following substances is also present in food? Draw a circle around the correct answer.

carbohydrate	hematite	poly(ethene)	terylene
--------------	----------	--------------	----------

(d) Compound **S** is one of the monomer units used to make proteins. Its structure is shown.

compound S

- (i) On the structure, draw a circle around the alcohol functional group. [1]
- (ii) Deduce the molecular formula of compound **S** showing the number of carbon, hydrogen, oxygen and nitrogen atoms.

[Total: 9]

[1]

3 (a) The apparatus used for distillation is shown.

(i) Complete the box to name the apparatus.

[1]

(ii) Describe and explain how the water is separated from the aqueous copper(II) sulfate by distillation.

(b) A sample of solid hydrated copper(II) sulfate is heated gently in a test-tube.

 $CuSO_4.5H_2O \rightleftharpoons CuSO_4 + 5H_2O$ hydrated copper(II) sulfate

Solid hydrated copper(II) sulfate is blue.

Describe two observations when the sample of solid hydrated copper(II) sulfate is heated gently in a test-tube.

1 2

[2]

- (c) Copper(II) sulfate can be prepared by heating an excess of copper(II) oxide with dilute sulfuric acid.
 - (i) Complete the chemical equation for this reaction.

$$CuO + H_2SO_4 \rightarrow CuSO_4 + \dots$$
[1]

(ii) What method is used to separate the excess copper(II) oxide from the solution?

......[1]

(d) Copper(II) oxide can be reduced by hydrogen.

$$CuO + H_2 \rightarrow Cu + H_2O$$

How does this equation show that copper(II) oxide is reduced?

.....[1]

(e) The chemical equation for the reaction of copper with concentrated nitric acid is shown.

 $Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$

Complete the word equation for this reaction.

[2]

[Total: 11]

4 (a) The structure of citraconic acid is shown.

Citraconic acid is an unsaturated compound.

- (i) What feature of the structure of citraconic acid shows that it is unsaturated?
 [1]
 (ii) Describe a test for an unsaturated compound.
 test
 result
- (b) Ethanoic acid has a carboxylic acid functional group.

Draw the structure of the carboxylic acid functional group. Show all of the atoms and all of the bonds.

[1]

(c) Complete the definition of a homologous series using words from the list.

chemical	compounds	elements	functional	hydrocarbons	physical
A homolo	gous series is a f	family of simila	ar	with similar .	
properties	due to the prese	ence of the san	ne	group.	[3]

(d) The graph shows how the pH of a dilute acid in a conical flask changes as aqueous sodium hydroxide is added to it.

5 (a) Some of the changes of state of water are shown.

.....Li +H₂O \rightarrow 2LiOH + H₂

[2]

(ii) Give the name of the product which causes the solution to be alkaline.

......[1]

- 10
- (c) Dilute sulfuric acid can be electrolysed using the apparatus shown.

(i)	State the products of this electrolysis at:	
	the positive electrode (anode)	
	the negative electrode (cathode).	
(ii)	What observation is made at the electrodes?	[2]
		[1]
(iii)	Suggest one reason why graphite is used for the electrodes rather than magnesium.	
		[1]
	[Total:	13]

6 (a) The diagrams show the structures of four substances, **R**, **S**, **T** and **U**.

7 (a) A student investigates the reaction of calcium carbonate with dilute hydrochloric acid.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

The student measures the mass of the reaction mixture at 10 second intervals using the apparatus shown.

The graph shows the results when 5.0g of calcium carbonate is added to an **excess** of dilute hydrochloric acid.

(i) Suggest why the reaction mixture decreases in mass as the reaction proceeds.

......[1]

(ii) Calculate the loss of mass in grams when the reaction is complete.

loss in mass = g [1]

(iii) The experiment is repeated using dilute hydrochloric acid of **twice** the concentration. All other conditions are kept the same.

On the grid, draw a graph to show how the mass changes with time using dilute hydrochloric acid of **twice** the concentration. [2]

 (iv) The original experiment is repeated at three different temperatures. All other conditions are kept the same. The three temperatures are 20°C, 30°C and 40°C.

Complete the table by writing the temperatures in the first column.

temperature in °C	initial rate of reaction in g/s
	0.16
	0.64
	0.32

[1]

(b) Complete the sentences about the use of calcium carbonate in the extraction of iron using words from the list.

bauxite	dioxide	hematite	monoxide	silicon	slag
The main ore o	of iron is calle	ed	The	e main impuri	ty in the iron ore is
silicon(IV) oxide	!_				
Calcium carbor	nate added t	o the blast	furnace dec	omposes to	form calcium oxide
and carbon		The cal	cium oxide re	acts with the	silicon(IV) oxide to
form					[0]

[3]

[Total: 8]

- 8 Glass can be made by heating a mixture of sand, sodium carbonate and limestone (calcium carbonate).
 - (a) (i) Calculate the relative formula mass of sodium carbonate, Na₂CO₃. Show all your working. Use your Periodic Table to help you.

(ii) Sodium carbonate can be manufactured by the reaction between limestone and sodium chloride. The reaction is endothermic.

What is meant by the term endothermic?

(iii) During this glass-making process, limestone decomposes into lime (calcium oxide). Lime is used to treat acidic soils.

What type of chemical reaction occurs when lime reacts with acidic soils? Draw a circle around the correct answer.

addition	neutralisation	oxidation	reduction

[1]

(b) Charcoal (carbon) can be burned in an excess of clean, dry air to provide the heat needed to make glass. (i) Which gas is 21% of clean, dry air?[1] Write a word equation for carbon burning in an excess of air. (ii)[1] (iii) Complete the energy level diagram for this reaction by adding these **two** words: reactants product energy progress of reaction [1] (c) Argon is also present in clean, dry air. (i) Give **one** use of argon.[1] (ii) Which two of the following statements about argon are correct? Tick two boxes. Argon is unreactive. Argon is diatomic. Argon is monatomic. Argon forms ionic compounds. Argon is a greenhouse gas. [2]

[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

0620/31/O/N/18

								Gro	oup								
I	II												IV	V	VI	VII	VIII
				Key			1 H hydrogen 1										2 He helium 4
3	4		á	atomic numbe	r			-				5	6	7	8	9	10
Li	Be		ato	mic sym	bol							В	С	N	0	F	Ne
lithium 7	beryllium 9		rela	^{name} ative atomic m	ass							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Τl	Pb	Bi	Po	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium —	astatine –	radon —
87	88	89–103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F1		Lv		
francium -	radium —		rutherfordium —	dubnium —	seaborgium —	bohrium —	hassium —	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium —		

The Periodic Table of Elements

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
	139	140	141	144	-	150	152	157	159	163	165	167	169	173	175
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	-	232	231	238	-	-	-	-	-	-	-	-	-	-	-

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).