

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/33
Paper 3 Theor	y (Core)	Oct	ober/November 2018
			1 hour 15 minutes
Candidates ans	swer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

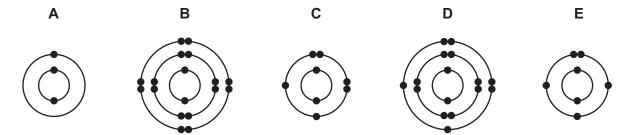
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

You may lose marks if you do not show your working or if you do not use appropriate units.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 (a) The electronic structures of five atoms, A, B, C, D and E, are shown.

Answer the following questions about these structures. Each structure may be used once, more than once or not at all. State which structure, **A**, **B**, **C**, **D** or **E**, represents:

(i)	an atom with a total of eight electrons	[1]
(ii)	an atom in Group V of the Periodic Table	[1]
(iii)	an atom with a complete outer shell of electrons	[1]
(iv)	an atom of a metallic element	[1]
(v)	an atom which forms a stable ion with a single positive charge.	[1]

(b) Complete the table to show the number of electrons, neutrons and protons in the neon atom and copper ion shown.

	number of electrons	number of neutrons	number of protons
²² ₁₀ Ne	10		
⁶⁵ ₂₉ Cu ⁺		36	

[3]

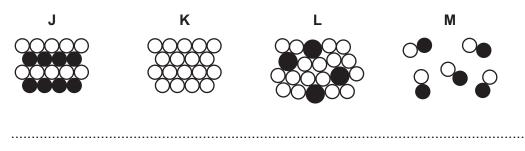
[Total: 8]

2 (a) The table shows the concentrations of the ions present in the solution obtained from squid nerve cells and in human blood plasma.

ion procent	solution obtained from squid nerve cells	human blood plasma		
ion present	concentration in g/1000 cm ³	concentration in g/1000 cm ³		
sodium	1.15	3.25		
potassium	15.60	0.16		
magnesium	0.03	0.04		
chloride	3.55	3.65		
hydrogencarbonate	trace	1.50		

Answer these questions using only information from the table.

	(i)	Give two major differences between the concentrations of the ions present in the solutiobtained from squid nerve cells and in human blood plasma.	on
		1	
		2	 [2]
	(ii)	Calculate the mass of potassium ions present in 250 cm³ of the solution obtained fro squid nerve cells.	mc
		mass of potassium ions = g	[1]
(b)	Des	scribe a test for sodium ions.	
	test		
	resi	ult	 [2]

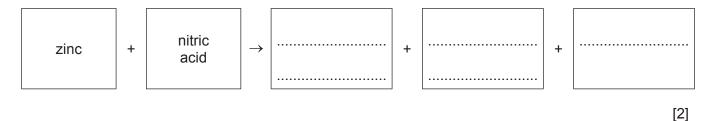

(c)	Squid produce an ink which contains a compound called taurine.
	The structure of taurine is shown

	Deduce the molecular formula of taurine showing the number of carbon, hydrogen, oxygen, nitrogen and sulfur atoms.
	[1]
(d)	The ink used for writing is a mixture of dyes. These dyes can be separated by paper chromatography.
	Describe how to separate a mixture of dyes using paper chromatography. Include a labelled diagram in your answer.
	[4]

[Total: 10]

3	(a)	Brass	is an	alloy	of copper	and zinc.

((i)	Which o	one of the	following	diagrams	best re	presents	an alloy?
٠,	\- <i>\</i>							



(ii)	Brass is used to make the propellers of ships rather than pure copper or pure zinc.
	Suggest a property of brass which explains this.

(b) The chemical equation for the reaction of zinc with concentrated nitric acid is shown.

$$Zn + 4HNO_3 \rightarrow Zn(NO_3)_2 + 2NO_2 + 2H_2O$$

(i) Complete the word equation for this reaction.

(ii) One of the compounds in this equation is a pollutant gas which contributes to acid rain.

Identify the pollutant gas and state a common source of it.

pollutant gas

source[2]

(c) Zinc oxide is reduced by heating it with carbon.

$$ZnO + C \rightarrow Zn + CO$$

How does this equation show that zinc oxide is reduced?

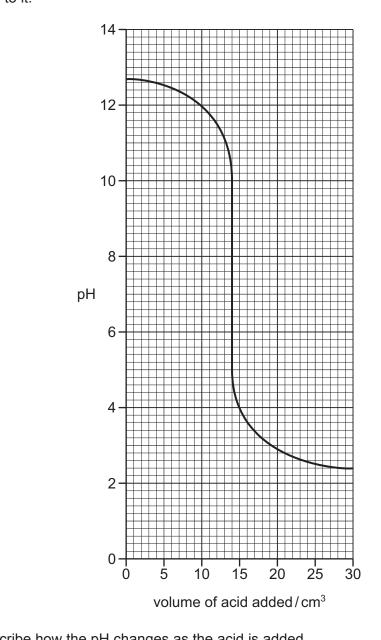
[1]

(d)	When green iron(II) sulfate is heated it loses its water of crystallisation.
	The reaction is reversible.

(i)	Comple	ete the	following	equation b	v writing	the si	ian for a	reversible	reaction i	in the I	box.
١.	,					,	,					

	FeSO₄.7H₂O green		FeSO ₄ + 7H ₂ O white	[1]
(ii)	Use the information in the equal green iron(II) sulfate.	tion to s	suggest how to change whi	te iron(II) sulfate into

[Total: 9]

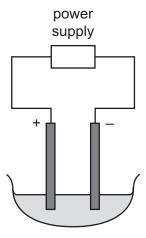

4 (a) The structure of compound **P** is shown.

compound ${\bf P}$

(i)	What feature of the structure of compound P shows that it is unsaturated?	
		[1]
(ii)	Describe the colour change when an excess of compound P is added to aqueous bromin	ne.
	from to	
		[2]
iii)	Compound P has a –COOH functional group.	
	Draw the structure of the –COOH functional group. Show all of the atoms and all of bonds.	the
		[1]
iv)	What effect would compound P have on litmus solution?	
		[1

(b) The concentration of aqueous sodium hydroxide can be found by reacting it with an acid of known concentration.

The graph shows how the pH of aqueous sodium hydroxide in a conical flask changes as acid is added to it.


(1)	Describe now the pri changes as the acid is added.	
		[2]
(ii)	What is the pH of the aqueous sodium hydroxide before the acid is added?	
		[1]
iii)	What volume of acid has been added when the solution reaches neutral pH?	
		[1]

[Total: 9]

5

(a)	When sulfur vapour falls on to a cold surface, small crystals of solid sulfur form.	
	Use the kinetic particle model to describe the arrangement and motion of the particles in su when it is:	ulfur
	• a gas	
	a solid	
		 [4]
(b)	Sulfur dioxide is formed when copper reacts with hot concentrated sulfuric acid.	
(D)	Sulful dioxide is formed when copper reacts with not concentrated sulful cacid.	
	Balance the chemical equation for this reaction.	
	$Cu +H_2SO_4 \rightarrow CuSO_4 + SO_2 +H_2O$	[0]
		[2]
(c)	Hot copper reacts with chlorine to form copper(II) chloride.	
	Describe a test for chloride ions.	
	test	
	result	 [2]
		[4]

(d) Molten copper(II) chloride can be electrolysed using the apparatus shown.

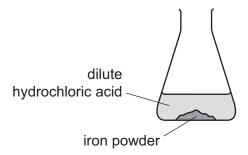
1	(i)	\bigcap n	tha	diagram	lahal
١,	1)	OH	ເເເຕ	ulayranı	ianci

- the cathode
- the electrolyte

[Total: 13]

6 (a) The diagrams show the structures of four substances, R, S, T and U.

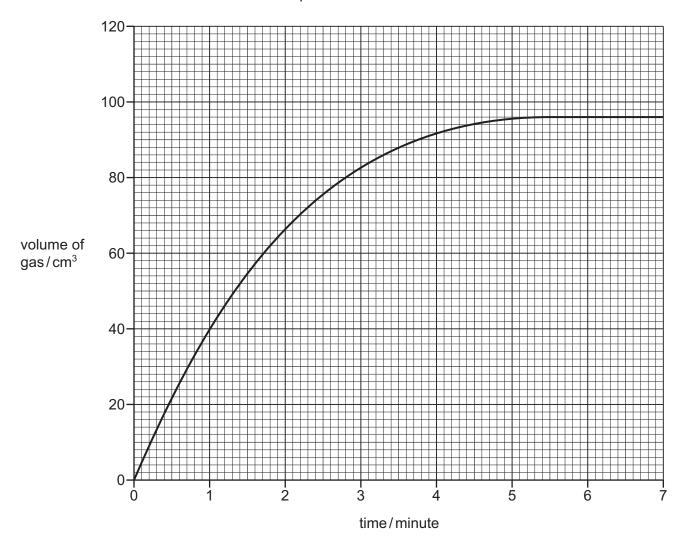
R	S	Т	U
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	< N≡N	Mn M
Sta	te which one of these substances	, R , S , T or U :	
(i)	is a compound		
(ii)	conducts electricity when solid		
(iii)	has the lowest melting point		[1]
(iv)	is a macromolecule		[1]
			[1]
(v)	can act as a catalyst.		[1]
(b) Sub	bstance S is potassium iodide.		


When aqueous potassium iodide reacts with aqueous chlorine, the solution turns brown.

Name the brown substance that forms. Using ideas about the reactivity of the halogens, suggest why the brown substance forms.

 	 	[2]

Potassium salts are present in many fertilisers.
Which one of the following compounds is also present in many fertilisers? Tick one box.
lead(II) bromide
calcium phosphate
copper(II) sulfide
tin(IV) oxide [1]
Many fertilisers contain ammonium salts.
Explain why farmers do not add calcium hydroxide (slaked lime) to the soil at the same time as fertilisers containing ammonium salts.
[2]
[Total: 10]


7 A student investigates the rate of reaction of iron powder with dilute hydrochloric acid.

(a) Complete the diagram to show the apparatus the student could use to collect and measure the gas produced.

Label your diagram. [3]

(b) The graph shows the results the student obtained using dilute hydrochloric acid of concentration 0.2 mol/dm³ and an excess of iron powder.

Use the graph to deduce:

(i) the time that the reaction was complete

[1]

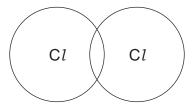
(ii) the volume of gas produced when the reaction was complete.

.....[1]

(c) The student repeated the experiment using a lower concentration of dilute hydrochloric acid. All other conditions were kept the same.

On the grid, draw a graph to show how the volume of gas changes with time when a lower concentration of dilute hydrochloric acid is used. [2]

(d)	The	n is extracted fro e solid substan cium carbonate	nces adde	0			are	iron	ore,	coke	and	limestone
	(i)	State the name										[4]
	(ii)	Complete the s		about the								
		air	d	ecompose	es	dioxid	е	n	nono	xide		
		nitrog	jen	oxidises		slag		tet	rachl	oride		
		The coke burns	s in a blast	of hot		t	o forr	n carl	bon di	ioxide.	This	reacts with
		further hot coke	e to form c	arbon			This	gas r	educe	es the	iron(I	II) oxide in
		the iron ore to i	iron.									
		The limestone		to	form I	ime (calc	ium o	xide)	which	n react	s with	impurities
		in the iron to fo	orm									[4]


[Total: 12]

8 The table shows the properties of some Group VII elements.

element	boiling point in °C	density at room temperature in g/cm³	physical state at room temperature
fluorine	-188	0.0017	
chlorine		0.0032	gas
bromine	59	3.1	liquid
iodine	184	4.9	solid

		iodine	184	4.9	solid	
(a)	(i)	Use this infor	mation to:			
		 identify th 	ne physical state o	f fluorine at room tempe	erature	
		• estimate	the boiling point of			
						[2]
	(ii)	iodine.	·		han the densities of br	
(b)	Ch	lorine is used in	n water treatment.			
	(i)	Why is chloring	ne added to water?	?		
						[1]
	(ii)	State one ma	ijor use of water in	industry.		
						[1]
(c)	Ch	lorine reacts wi	th phosphorus to f	form phosphorus(III) ch	nloride.	
	Ва	lance the chem	nical equation for the	nis reaction.		
			P -	$+ \dots Cl_2 \rightarrow 2PCl_3$		[2]

(d) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of chlorine. Show outer shell electrons only.

[2]

[Total: 9]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

Group																	
I	П											Ш	IV	V	VI	VII	VIII
				Key			1 H hydrogen 1										2 He helium 4
3	4			atomic numbe								5	6	7	8	9	10
Li	Be		ato	mic sym	bol							В	С	N	0	F	Ne
lithium 7	beryllium 9		rela	name ative atomic m	ass							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
11	12					Į						13	14	15	16	17	18
Na	Mg											Αl	Si	Р	S	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium —	astatine –	radon —
87	88	89–103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F1		Lv		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
_	_		_	_	_	-	-	-	_	_	_		_		_		

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
	139	140	141	144	_	150	152	157	159	163	165	167	169	173	175	
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
	-	232	231	238	_	_	_	_	_	_	_	_	-	_	_	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).