Cambridge Assessment International Education

Cambridge International Advanced Level

FURTHER MATHEMATICS

9231/22
Paper 2
October/November 2018
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance
1	$v_{A}{ }^{2}=\omega^{2}\left(a^{2}-0.1^{2}\right)$ and $v_{B}{ }^{2}=\omega^{2}\left(a^{2}-0.5^{2}\right)$	$\mathbf{B 1}$	Use $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ at A and B (may be implied)
	$a^{2}-0.1^{2}=2\left(a^{2}-0.5^{2}\right)$	$\mathbf{M 1}$	Find amplitude a from ratio 2 of $[1 / 2 m] v_{A}{ }^{2}$ to $[1 / 2 m] v_{B}{ }^{2}$
	$a^{2}=0.5-0.01=0.49, a=0.7[\mathrm{~m}]$	$\mathbf{A 1}$	(taking ratio $1 / 2$ loses A1)
		$\mathbf{3}$	

Question	Answer	Marks	
$2(\mathrm{i})$	$2 m v_{A}+m v_{B}=2 m u$	(AEF)	M1
	$v_{B}-v_{A}=2 / 3 u$	Use momentum (allow m omitted)	
	$v_{A}=4 u / 9, v_{B}=10 u / 9$	$\mathbf{M 1}$	Use Newton's law (M0 if LHS signs inconsistent)
		$\mathbf{4} 1, \mathbf{A 1}$	Combine to find speeds of A and B after collision

Question	Answer	Marks	Guidance
2(ii)	$w_{B}=[-] \frac{1}{2} v_{B}[= \pm 5 u / 9]$	M1	Relate speed w_{B} of B after colln. with wall to v_{B} (ignore sign)
	EITHER: $(d-x) / v_{A}=d / v_{B}+x / w_{B} \quad$ (AEF)	M1	EITHER: Equate times in terms of dist. x from wall to 3rd colln.
	$(d-x) / 4=d / 10+x / 5, x=d / 3$	M1A1	Substitute for speeds to solve for x
	$t=(d-x) / v_{A}=(2 d / 3) /(4 u / 9)=3 d / 2 u$	A1	and hence find reqd. time t
	OR: $\quad x_{A}=\left(d / v_{B}\right) v_{A}=(9 d / 10 u) /(4 u / 9)=2 d / 5$	(M1	OR: \quad Find dist. x_{A} moved by A when B reaches wall
	$\begin{aligned} & t=d / v_{B}+\left(d-x_{A}\right) /\left(v_{A}+w_{B}\right) \\ & =d /(10 u / 9)+(3 d / 5) /(4 u / 9+5 u / 9) \\ & =9 d / 10 u+3 d / 5 u \end{aligned}$	M1A1	Find t by adding times to and from wall (or equivalent method)
	$=3 d / 2 u$	A1)	
		5	

Question	Answer	Marks	Guidance
3(i)	$\begin{aligned} & 1 / 2 m v_{B}^{2}=1 / 2 m u^{2}-m g a(\sin \alpha-\cos \alpha) \\ & {\left[v_{B}^{2}=u^{2}-(14 / 13) a g\right]} \end{aligned}$	M1A1	Find speed v_{B} at B by conservation of energy (A 0 if no m) $[\sin \alpha=12 / 13, \cos \alpha=5 / 13]$
	$\left[T_{B}=\right] m v_{B}^{2} / a-m g \sin \alpha=0\left[v_{B}{ }^{2}=(12 / 13) a g\right]$	B1	Equate tension T_{B} at B to zero by using $F=m a$ radially
	$u^{2}=(3 \sin \alpha-2 \cos \alpha) a g$	M1	Combine to verify u^{2}
	$=(36 / 13-10 / 13) a g=2 a g \quad$ AG	A1	
		5	

Question	Answer	Marks	Guidance
3(ii)	$\begin{aligned} \text { EITHER: } & 1 / 2 m v_{C}^{2}=1 / 2 m u^{2}+m g a(1+\cos \alpha) \\ & \text { or } 1 / 2 m v_{B}^{2}+m g a(1+\sin \alpha)\left[v_{C}^{2}=62 a g / 13\right] \end{aligned}$	M1	Find $v_{C}{ }^{2}$ at lowest point C by conservation of energy
	$T_{\text {max }}=m v_{C}{ }^{2} / a+m g$	B1	Find tension $T_{\text {max }}$ at lowest point from $F=m a$ radially
	$=62 m g / 13+m g$	M1	Combine to find $T_{\max }$
	$=75 \mathrm{mg} / 13$ or 5.77 mg or 57.7 m	A1	
	$\begin{array}{ll} \text { OR: } & 1 / 2 m V^{2}=1 / 2 m u^{2}+m g a(\cos \alpha+\cos \theta) \\ & {\left[V^{2}=2 a g(18 / 13+\cos \theta)\right]} \end{array}$	(M1	Find V^{2} at general point by conservation of energy (where $O P$ is e.g. at θ to downward vertical)
	$T=m V^{2} / a+m g \cos \theta=(36 / 13+3 \cos \theta) m g$	B1	Find tension T at general point from $F=m a$ radially
	$T_{\text {max }}=(36 / 13+3) m g$	M1	Combine to find $T_{\max }$ at lowest point where $\theta=0$
	$=75 \mathrm{mg} / 13$ or 5.77 mg or 57.7 m	A1)	
		4	

Question	Answer	Marks	Guidance
4(i)		B1	Take moments for rod about one chosen point ($F_{A} \times$ may be replaced by μR_{A} and $\cos 45^{\circ}$ by e.g. $1 / \sqrt{ } 2$) (A single resolution along the rod will then suffice since no R_{C}) (G is mid-point of $A B$) (D is on gound below G)
	Horizontally: $\quad F_{A}-R_{C} \cos 45^{\circ}=0$	B1	Find two more indep. eqns, e.g. resolution of forces on rod
	Vertically: $\quad R_{A}+R_{C} \cos 45^{\circ}-W=0$	B1	(a second moment eqn. may be used)
	Along rod: $\quad F_{A} \cos 45^{\circ}+R_{A} \cos 45^{\circ}-W \cos 45^{\circ}=0$	(B1	
	Perp. to rod: $\quad F_{A} \cos 45^{\circ}-R_{A} \cos 45^{\circ}-R_{C}+W \cos 45^{\circ}=0$	B1)	
	$\begin{aligned} & {\left[R_{A}=W /(1+\mu), F_{A}=\mu W /(1+\mu), R_{C}=\mu W \sqrt{ } 2 /(1+\mu)\right]} \\ & x=a(1+\mu) / 2 \mu \text { or } 1 / 2 a(1+1 / \mu) \end{aligned}$	M1A1	Combine to find $x\left(\right.$ using $F_{A}=\mu R_{A}$ and $\left.\cos 45^{\circ}=1 / \sqrt{ } 2\right)$
		5	
4(ii)	$a(1+\mu) / 2 \mu \leqslant 2 a$ so $\mu \geqslant 1 / 3$ (AG	M1A1	Verify μ using $x \leqslant 2 a$
		2	
4(iii)	$a(1+\mu) / 2 \mu=3 a / 2$ so $\mu=1 / 2$	M1A1	Find μ when $x=3 a / 2$ using result in (i)
	$\begin{aligned} F_{A}= & W / 3, R_{A}=2 W / 3\left[R_{C}=(\sqrt{ } 2) W / 3\right] \\ & N_{A}=\sqrt{ }\left(F_{A}{ }^{2}+R_{A}^{2}\right)=(\sqrt{ } 5 / 3) W \text { or } 0.745 \mathrm{~W} \end{aligned}$	M1A1	Find F_{A}, R_{A} and hence magnitude of resultant force N_{A} at A
		4	

Question	Answer	Marks	Guidance
5(i)	$I_{\text {disc }}=1 / 2 \times 1 / 23 M(2 a)^{2}\left[=3 M a^{2}\right]$	M1	Find MI of disc parallel to axis l at its centre using perpendicular axis theorem (M0 if theorem not used)
	$I_{\text {disc }}{ }^{\prime}=I_{\text {disc }}+3 M(5 a)^{2}=78 M a^{2}$	M1A1	Find MI of disc about axis l
	$I_{\text {rod }}=1 / 3 k M(3 a / 2)^{2}+k M(3 a / 2)^{2}=3 k M a^{2}$	B1	Find or state MI of $\operatorname{rod} A B$ about axis l
	$I=(78+3 k) M a^{2}=3 M a^{2}(26+k) \quad$ AG	A1	Find MI of object about axis l (A0 if inadequate explanation)
	SC: $I_{\text {disc }}{ }^{\prime}=1 / 2\left\{1 / 23 M(2 a)^{2}+3 M(5 a)^{2}\right\}=(81 / 2) M a^{2}$	(M1)	SC: Invalidly applying theorems in wrong order to disc (max 2)
		5	
5(ii)	$\begin{aligned} & {[-] I \mathrm{~d}^{2} \theta / \mathrm{d} t^{2}=3 M g \times 5 a \sin \theta+(k M g \times(3 a / 2) \sin \theta} \\ & {[=3(5+1 / 2 k) M g a \sin \theta]} \end{aligned}$	M1A1	Use eqn of circular motion to find $\mathrm{d}^{2} \theta / \mathrm{d} t^{2}$ where θ is angle of rod with vertical
	$\mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-\{g(10+k) / 2 a(26+k)\} \theta$ (AEF)	M1A1	Approximate $\sin \theta$ by θ to show SHM (M0 if $\cos \theta \approx \theta$ used or sign wrong; A0 if LHS unclear)
	$2 \pi / \sqrt{ }\{(10+k) / 2(26+k)\}=4 \pi$	M1	Find k by equating period T to $4 \pi \sqrt{ }(a / g)$ [so $\omega=1 / 2 \sqrt{ }(g / a)$]
	$2(26+k)=4(10+k), k=6$	A1	
		6	

Question	Answer		Marks	Guidance
6	$\bar{x}=90.3 / 8=11.2875$	(to 4 s.f.)	B1	Find sample mean
	$s^{2}=\left(1043.67-90.3^{2} / 8\right) / 7$		M1	Estimate population variance
	$=19527 / 5600$ or 3.487 [or 1.867^{2}]	(to 4 s.f.)	A1	(allow biased here: 3.051 or 1.747^{2})
	$90.3 / 8 \pm t \sqrt{ }\left(s^{2} / 8\right)$		M1	Find confidence interval
	$t_{7,0.975}=2.365$	(to 4 s.f.)	A1	State or use correct tabular value of t
	11.3 ± 1.6 or $[9.7,12.8[5]]$		A1	Evaluate C.I. (either form)
			6	

Question	Answer	Marks	Guidance
7(i)	EITHER: $\mathrm{G}(y)$ $\begin{aligned} & {\left[=\mathrm{P}(Y<y)=\mathrm{P}\left(X^{2}<y\right)\right.} \\ & \left.=\mathrm{P}\left(X<y^{1 / 2}\right)=\mathrm{F}\left(y^{1 / 2}\right)\right]=(1 / 90)\left(y+y^{2}\right) \end{aligned}$	M1A1	Find or state $\mathrm{G}(y)$ for $0 \leqslant x \leqslant 3$ from $Y=X^{2}$ (allow $<$ or \leqslant throughout)
	$\begin{array}{ll} \text { OR: } & \text { Use } x=y^{1 / 2} \text { to find } \\ & \mathrm{f}(x)=(1 / 90)\left(2 x+4 x^{3}\right)=(1 / 90)\left(2 y^{1 / 2}+4 y^{3 / 2}\right) \\ & \text { and } \mathrm{d} x / \mathrm{d} y=1 / 2 y^{1 / 2} \end{array}$	(M1A1)	Find $\mathrm{f}(x)$ and $\mathrm{d} x / \mathrm{d} y$ for use in $\mathrm{g}(y)=\mathrm{f}(x) \times\|\mathrm{d} x / \mathrm{d} y\|$
	$\mathrm{g}(y)\left[=\mathrm{G}^{\prime}(y)\right]=(1 / 90)(1+2 y)$	A1	Find $\mathrm{g}(\mathrm{y})$ in simplified form
	for $0 \leqslant y \leqslant 9$ [$\mathrm{g}(\mathrm{y})=0$ otherwise]	A1	State corresponding range of y at any stage
		4	
7(ii)	$\mathrm{E}(Y)=(1 / 90) \int\left(y+2 y^{2}\right) \mathrm{d} y$	M1	Find mean of Y from $\int y \mathrm{~g}(y) \mathrm{d} y$
	$=(1 / 90)\left[1 / 2 y^{2}+2 / 3 y^{3}\right]_{0}{ }^{9}=117 / 20$ or 5.85	A1	
		2	

Question	Answer	Marks	Guidance
8(i)	$\begin{aligned} & \mathrm{P}(X \geqslant 5)=(1-p)^{4}=0.4096 \\ & p=1-0.8=0.2 \end{aligned}$	M1A1	Verify p using $\mathrm{P}(X \geqslant 5)=0.4096$
		2	
8(ii)	$\mathrm{P}(X=6)=(1-p)^{5} p=0.8^{5} \times 0.2=0.0655$	M1A1	Find $\mathrm{P}(X=6)$
		2	
8(iii)	$1-(1-p)^{N}>0.9$	M1	Formulate condition for $N\left(1-(1-p)^{N-1}\right.$ is M0)
	$0.1>0.8^{N}$	A1	($<$ or = can earn M1 M1 only, max 2/4)
	$N>\log 0.1 / \log 0.8=10.3$	M1	Rearrange and take logs (any base) to give bound
	$N_{\text {min }}=11$ corresponding to Monday of 3rd week	A1	Find $N_{\text {min }}$ and corresponding day and week
		4	

Question	Answer	Marks	Guidance
9(i)	$\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho \neq 0$	B1	State both hypotheses (B0 for $r \ldots$)
	EITHER: $\mathrm{r}_{5,5 \%}=0.878$	*B1	State or use correct tabular two-tail r-value
	Accept H_{0} if $\|r\|<$ tab. value (AEF)	M1	State or imply valid method for conclusion
	OR: $\quad t_{\mathrm{r}}=r \checkmark\left((n-2) /\left(1-r^{2}\right)\right)=-2.08, t_{4,0.975}=2.776$ or 2.78	(*B1	(Rarely seen)
	Accept H_{0} if $\left\|t_{\mathrm{r}}\right\|<$ tab. t-value \quad (AEF)	M1)	
	No evidence of [non-zero] correlation (AEF)	A1	Correct conclusion (dep *B1)
		4	

Question	Answer	Marks	Guidance
9(ii)	$c d=r^{2} \quad\left[=(-0.7214)^{2}=0.52042\right]$	M1	Find $c d$
	$\bar{x}=10.8+d(4.2+c \bar{x})[\bar{y}=2.137]$	M1	Find 2 nd eqn. for c, d using means in eqns. of regression lines Combine to find c (or d)
	$\begin{aligned} & c=4.2 r^{2} /\left\{\left(1-r^{2}\right) \bar{x}-10.8\right\}=-0.294 \\ & \text { or } d=\left\{\left(1-r^{2}\right) \bar{x}-10.8\right\} / 4.2=-1.77 \end{aligned}$	M1A1	
	$d=0.7214^{2} / c=-1.77$ or $c=0.7214^{2} / d=-0.294$	A1	and hence d (or c)
		5	
9(iii)	$x=10.8-1.77 \times 3.5=4.60[5][y$ on x gives 2.38]	B1	Find y from eqn. of regression line of x on y
	e.g. not reliable since no evidence of correlation or reasonably reliable since 0.7214 close to 1 or not reliable since 0.7214 not close to 1 or reliability unclear as degree of extrapolation unknown	B1	Valid comment on reliability (AEF)
		2	

Question	Answer	Marks	Guidance
10(i)	$\begin{equation*} \bar{x}=\Sigma x \mathrm{f}(x)=118 / 40=2.95 \tag{AG} \end{equation*}$	B1	Verify mean of sample data (B0 for $\bar{x}=118 / 40=2.95)$
	$\begin{aligned} & \sigma_{n}^{2}=\left(454-118^{2} / 40\right) / 40=2.65 \\ & \text { or } \sigma_{n-1}^{2}=\left(454-118^{2} / 40\right) / 39=2.72 \end{aligned}$	B1	Find variance of sample data (accept either σ_{n}^{2} or $\sigma_{n-1}{ }^{2}$)
	$2.95 \approx 2.65$ or 2.72	B1	Valid comment on correct values
		3	

Question	Answer	Marks	Guidance
10(ii)	$\begin{aligned} & E_{4}=40 \lambda^{4} \mathrm{e}^{-\lambda} / 4!\text { with } \lambda=2.95 \quad[=40 \times 0.1652] \\ & \text { (allow } \left.(\lambda / 4) \times E_{3}=0.7375 \times 8.96\right) \end{aligned}$	M1A1	State expression for reqd. expected value E_{4}
		2	
10(iii)	H_{0} : [Poisson] distribution fits data (AEF)	B1	State (at least) null hypothesis in full
	$\begin{array}{lccccc} O_{i}: & \underline{8} & 8 & 10 & 5 & \underline{9} \\ E_{i}: & \underline{8.27} & 9.11 & 8.96 & 6.61 & \underline{7.05} \end{array}$	M1	Combine values consistent with all exp. values $\geqslant 5$
	$X^{2}=0.0088+0.1352+0.1207+0.3921+0.5394$	M1	Find value of X^{2} from $\Sigma\left(E_{i}-O_{i}\right)^{2} / E_{i}\left[\right.$ or $\left.\Sigma O_{i}^{2} / E_{i}-n\right]$
	$=1.20$ (to 3 s.f.)	A1	
	$\begin{array}{lcccc} \text { No. } n \text { of cells: } & 8 & 7 & 6 & \underline{5} \\ \chi_{n-2,0.95}{ }^{2}: & 12.59 & 11.07 & 9.488 & \underline{7.815} \end{array}$	B1	State or use consistent tabular value $\chi_{n-2,0.95}{ }^{2}$ (to 3 s.f.) [FT on number, n, of cells used to find X^{2}]
	Accept H_{0} if $X^{2}<$ tabular value (AEF)	M1	State or imply valid method for conclusion
	1.20 [$\pm 0.1]<7.81[5]$ so [Poisson] distn. fits [data] or distn. is a suitable model	A1	Conclusion (requires both values correct)
		7	

Question	Answer	Marks	Guidance
$11 \mathrm{~A}(\mathrm{i})$	EITHER: $40 e_{0} / 0.8=2 g, e_{0}=0.4\left[\right.$ or $\left.O P_{0}=1.2\right][\mathrm{m}]$	M1A1	Find extension e_{0} [or $O P_{0}$] at equilibrium position P_{0}
	$\begin{array}{ll} 2 \mathrm{~d}^{2} x / \mathrm{d} t^{2} & =-40\left(e_{0}+x\right) / 0.8+2 g \\ \text { or } & =+40\left(e_{0}-x\right) / 0.8-2 g \end{array}$	M1A1	Use Newton's law at general point (e.g. x below or above P_{0}) (ignore LHS sign here only)
	$\text { OR: } \quad \begin{aligned} 2 \mathrm{~d}^{2} y / \mathrm{d} t^{2} & =-40(y-0.8) / 0.8+2 g \\ & =-50 y+60 \end{aligned}$	(M1A1	Use Newton's law at general point in terms of $y=O P$ (ignore LHS sign here only)
	Take $x=y-1.2$ to give	M1A1)	Change variable to give standard form of SHM eqn
	$\mathrm{d}^{2} x / \mathrm{d} t^{2}=-25 x$	A1	$\begin{array}{ll}\text { Hence SHM } & \text { (A0 if wrong sign or LHS unclear) } \\ & \text { (B1 only for stating SHM eqn. without proof) }\end{array}$
	$T=2 \pi / \sqrt{ }(25)=2 \pi / 5 \quad$ AG	A1	Verify period T using $T=2 \pi / \omega$ with $\omega=\sqrt{ }(25)$
	$O P_{0}=1.2[\mathrm{~m}]$	B1	State $O P_{0}$ explicitly (may imply first M1 A1)
		7	
11A(ii)	$0.4^{2}=25\left(a^{2}-0.06^{2}\right)$	M1A1	Find amplitude a from $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$
	$a=\sqrt{ }(0.0064+0.0036)=0.1[\mathrm{~m}]$	A1	
		3	
11A(iii)	$\begin{array}{ll} 40 e_{1} / 0.8=(2+M) g, & {\left[e_{1}=0.4+0.2 M\right]} \\ \text { or } 40\left(e_{1}-e_{0}\right) / 0.8=M g & {\left[e_{1}-e_{0}=0.2 M\right]} \end{array}$	M1A1	Find extension e_{1} [or $O P_{1}$] at first equilibrium position P_{1} or equate additional extension to M by Hooke's Law
	$e_{1}-e_{0}=a, M=a / 0.2=0.5$	M1A1	Find M by relating e_{0}, e_{1} and a
		4	

Question	Answer	Marks	Guidance
11B(i)	$\mathrm{H}_{0}: \mu_{x}=\mu_{y}, \mathrm{H}_{1}: \mu_{x}>\mu_{y}\left(\right.$ or in terms of $\left.\mu_{A}, \mu_{B}\right)$	B1	State hypotheses (B0 for $\bar{x} \ldots$)
	$\begin{aligned} & s_{x}{ }^{2}=\left(14.1775-10.56^{2} / 8\right) / 7=0.03404 \text { and } \\ & s_{y}{ }^{2}=\left(15.894-12.39^{2} / 10\right) / 9=0.06031 \text { (to } 3 \text { s.f.) } \end{aligned}$	M1A1	Estimate both population variances (allow biased here: 0.02979 and 0.05428)
	$\begin{aligned} & s^{2}=\left(7 s_{x}^{2}+9 s_{y}^{2}\right) / 16 \\ & \text { or }\left(14.1775-10.56^{2} / 8+15.894-12.39^{2} / 10\right) / 16 \\ & \quad=0.78109 / 16 \text { or } 0.04882 \text { or } 0.22095^{2} \quad \text { (to } 3 \text { s.f.) } \end{aligned}$	M1A1	Find pooled estimate of common variance (M1 A1 for $s_{x}{ }^{2}$ and $s_{y}{ }^{2}$ may be implied here)
	$t_{16.0 .9}=1.337$ (to 3 s.f.)	*B1	State or use correct tabular t value
	$t=(1.32-1.239) / s \sqrt{ }(1 / 10+1 / 8)=0.773$	M1A1	Calculate value of $t($ or $-t)$ (or can compare $\bar{y}-\bar{x}=0.081$ with 0.140)
	$t<$ tabular value so claim not justified or A 's not heavier than B 's (AEF)	B1	Correct conclusion (FT on t, dep *B1)
	$\begin{aligned} \text { SC: } z & =(1.32-1.239) / \sqrt{ }\left(s_{x}^{2} / 8+s_{y}^{2} / 10\right) \\ & =0.081 / \sqrt{ }(0.078)=0.799 \end{aligned}$	(B1	SC: Implicitly taking $s_{x}{ }^{2}, s_{y}{ }^{2}$ as unequal popln. variances (may also earn first B1 M1 A1)
	$z<1.282$ so claim is not justified (AEF)	B1)	Comparison with $z_{0.9}$ and conclusion (FT on z; max 5/9)
		9	
11B(ii)	$\bar{x}=1.28$ and $s^{2}=0.294 / 7\left[=0.042\left(\right.\right.$ or $\left.\left.0.205^{2}\right)\right]$	M1	Find sample mean \& estimate popn. var (allow M1 if 0.294 / 8)
	$t=(1.28-p) / \sqrt{ }(0.042 / 8) \quad$ (AEF)	M1A1	Find value of t
	$t>1.415\left(<\right.$ is A0), $p<1.28-0.1025, p_{\text {max }}=1.18$	M1A1	Find $p_{\text {max }}$ by comparison with tabular value, here $t_{7.0 .9}$
		5	

