

This document consists of 12 printed pages.

© UCLES 2018 [Turn over

Cambridge Assessment International Education
Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE 9608/21

Paper 1 Written Paper October/November 2018

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most
Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level
components.

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 2 of 12

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level descriptors
for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

� the specific content of the mark scheme or the generic level descriptors for the question

� the specific skills defined in the mark scheme or in the generic level descriptors for the question

� the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

� marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

� marks are awarded when candidates clearly demonstrate what they know and can do

� marks are not deducted for errors

� marks are not deducted for omissions

� answers should only be judged on the quality of spelling, punctuation and grammar when these
features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 3 of 12

Question Answer Marks

1(a)(i)

Statement Selection Repetition
(Iteration)

Assignment

WHILE Count < 20

Count ← Count + 1

If MyGrade <> 'C' THEN

Mark[Count] ←
GetMark(StudentID)

ELSE OUTPUT "Fail"

ENDFOR

One mark for each row

6

1(b)(i)

Statement Data type

MyAverage ← 13.5 REAL

ProjectCompleted ← TRUE BOOLEAN

Subject ← "Home Economics" STRING

MyMark ← 270 INTEGER

MyGrade ← 'B' CHAR

5

1(b)(ii)

Expression Evaluates to

"Air-" & MID(Subject, 7, 3) "Air-con"

INT(MyAverage / 2) 6

ProjectCompleted AND MyMark > 270 FALSE

ProjectCompleted OR MyMark > 260 TRUE

ASC(MyGrade / 3) ERROR

5

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 4 of 12

Question Answer Marks

2(a) FUNCTION GetDiscountRate(CardNum : STRING) RETURNS REAL
 DECLARE DRate : REAL
 DECLARE Points : INTEGER

 DRate ← 0

 Points ← GetPoints(CardNum)
 IF Points > 199
 THEN

 DRate ← 0.2
 ELSE
 IF Points > 99
 THEN

 DRate ← 0.1
 ENDIF
 ENDIF

 IF Today() = 3
 THEN

 DRate ← DRate * 1.2
 ENDIF

 RETURN DRate

ENDFUNCTION

1 mark for each of the following:

1 Correct FUNCTION heading (as given) and end

2 Declaring local variables for DRate and Points

3 Initialisation of DRate to zero and Points ← GetPoints(CardNum)

4 IF « THEN ...(ELSE) … ENDIF with Points > 199

5 (Nested) IF ... THEN … ENDIF with Points > 99

6 «correct assignments of DRate to 0.2 and 0.1

7 Checking Today() = 3 and increasing DRate by 20%

8 Return parameter // GetDiscountRate ← DRate

Mark points 7 and 8 must not be nested

8

2(b)(i) Name: Syntax
Description: Rules of programming language have not been followed

Name: Logic
Description: Where the program does not behave as expected / does not give the
expected result / an error in the logic of the algorithm

1mark for name + 1 mark for corresponding description

2

2(b)(ii) Name: Stub testing

Description: A function could be written for GetPoints() that simply returns a

test value or outputs a message (i.e. doesn't do the CardNum lookup)

2

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 5 of 12

Question Answer Marks

2(c)(i) 1 mark for any of the following two values:

0.1
0.2
1.2
99
199
3

1

2(c)(ii) Example:

CONSTANT MinDiscount = 0.1

1 mark for each of the following:

� meaningful identifier name and corresponding value

� correct syntax

2

2(c)(iii) 1 mark for:

� The value cannot accidentally get changed // be different in two places

� A change to the value requires changing in one place only / don’t have to
repeatedly write out the same value throughout the program

2

2(c)(iv) Tried and tested // pre compiled (contains no syntax errors) 1

2(c)(v) 1 mark for feature (Name) and 1 mark for corresponding description (explanation)

Example:

Name: Meaningful variable names
Explanation: To reduce the risk of referring to the wrong variable / make the code
easier to understand

Name: Indentation
Explanation: To see where loops / selection start / end // indicate program structure

Name: Variable type-checking as part of module interface
Explanation: Reduces the risk of using an incorrect parameter

Name: Pretty-Printing
Explanation: Highlights the error / auto-complete / type checking

Name: / Dynamic Syntax Checking
Explanation: Highlights the error as code is typed in

2

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 6 of 12

Question Answer Marks

3(a) Code has to be in machine code (or equivalent) to be executed 1

3(b) 1 mark for the name (what you do) and one for description (how)

For example:

Method:

� Dry run the code // use of white box testing // trace tables

� Trace the contents of variables // trace all possible routes through the program

Method:

� Breakpoints

� Run the code to a set point to find error

Method:

� Variable watch

� Check the contents of variables at specific points in the program

Method:

� Stepping

� Execute the code line by line

Method:

� Include OUTPUT statements in the code

� to display the value of variables as the code was running

4

3(c)

Statement White-box Black-box

The student does not need to know the structure of
the code.

The student chooses data to test every possible path
through the code.

The student chooses normal, boundary and
erroneous data.

 ()

The student chooses data to test that the program
meets the specification.

1 mark per row

4

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 7 of 12

Question Answer Marks

4(a)(i)

The identifier name of a global integer referenced NumElements

The identifier name of a user-defined procedure SaveToFile

The line number of an unnecessary statement 16

The scope of ArrayString Local

4

4(a)(ii) 1 mark for each mark point:

� Loop / repeat / iterate through array ResultArray one element at a time

� extract a string from row / column 1 of the array

� compare the string with SearchString

� if they match, call SaveToFile() and increment NumberFound

4

4(b) Pseudocode solution included here for development and clarification of mark
scheme.
Programming language solutions appear at the end of this mark scheme.

FUNCTION ScanArray(SearchString : STRING) RETURNS INTEGER

 DECLARE ArrayIndex : INTEGER
 DECLARE ArrayString : STRING
 DECLARE NumberFound : INTEGER

 NumberFound ← 0

 FOR ArrayIndex ← 1 TO NumElements

 ArrayString ← ResultArray[ArrayIndex, 1]
 IF TO_UPPER(ArrayString) = TO_UPPER(SearchString)
 THEN
 CALL SaveToFile(ArrayString)

 NumberFound ← NumberFound + 1
 ENDIF
 ENDFOR

 RETURN NumberFound

ENDFUNCTION

1 mark for each of the following:

1 Function header and end including parameter and return

2 Declaration of two local variables as above but NOT NumElements

3 FOR … ENDFOR loop with range as given

4 Referencing each element from the array
5 Converting both strings to uppercase / lowercase

6 If strings are equal then Call SaveToFile()and increment NumberFound

6

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 8 of 12

Question Answer Marks

4(c) 1 mark for name; 1 mark for each advantage (max 2)

Name:
Stepwise refinement // Top-down design // Modularisation // Decomposition

Advantage:

� Makes the problem / task / algorithm easier to understand // reduce program
complexity

� Smaller modules easier to develop / test / debug

� Programmers can work on different modules // different expertise

3

4(d) Pseudocode solution included here for development and clarification of mark
scheme.
Programming language solutions appear at the end of this mark scheme.

DECLARE ResultArray : ARRAY [1:100, 1:2] OF STRING
DECLARE i, j : INTEGER

FOR i ← 1 to 100

 FOR j ← 1 to 2

 ResultArray[i, j] ← '*'
 ENDFOR
ENDFOR

One mark for:

� ResultArray declaration / commented in Python

� assigning to all elements

� assignment of ‘*’

3

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 9 of 12

Question Answer Marks

5 FUNCTION SaveStatus() RETURNS BOOLEAN

 DECLARE Time : STRING
 DECLARE Fuel : STRING
 DECLARE Distance : STRING
 DECLARE FileData : STRING
 DECLARE Tries : INTEGER
 DECLARE ReturnFlag : BOOLEAN

 Tries ← 1

 ReturnFlag ← TRUE

 Distance ← GetDistance()

 Fuel ← GetFuel()

 Time ← GetTime()

 WHILE Time = NULL AND Tries < 3

 Time ← GetTime()

 Tries ← Tries + 1
 ENDWHILE

 IF Time = NULL
 THEN

 ReturnFlag ← FALSE
 ELSE

 FileData ← Time & ',' & Fuel & ',' & Distance
 OPENFILE "CarStatus.txt" FOR APPEND
 WRITEFILE "CarStatus.txt", FileData
 CLOSEFILE "CarStatus.txt"
 ENDIF

 RETURN ReturnFlag

ENDFUNCTION

1 mark for each of the following:

1 Function heading as shown

2 Declare Time local variable as STRING

3 Calls GetDistance()and GetFuel() once

4 Loop (up to three times or) until Time <> NULL

5 Call GetTime()in a loop

6 Return FALSE if 3 NULLs

7 Open file in APPEND mode
8 Forming the text string with comma separators and write to the file
9 OPEN « WRITE « CLOSE as three lines not separated by loop

10 Return TRUE

10

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 10 of 12

Program Code Solutions

Q4 (b): Visual Basic

Function ScanArray(SearchString As String) As Integer

 Dim ArrayIndex As Integer
 Dim ArrayString As String
 Dim NumberFound As Integer

 NumberFound = 0

 For ArrayIndex = 1 To NumElements
 ArrayString = ResultArray(ArrayIndex, 1)
 If UCase(ArrayString) = UCase(SearchString) Then
 Call SaveToFile(ArrayString)

 NumberFound = NumberFound + 1
 End If

 Next ArrayIndex
 Return NumberFound

End Function

Q4 (b): Pascal

function ScanArray(SearchString : String) : Integer;

 var
 ArrayIndex : Integer;
 ArrayString : String;
 NumberFound : Integer;

 begin
 NumberFound := 0;

 For ArrayIndex := 1 To NumElements do
 begin
 ArrayString := ResultArray[ArrayIndex, 1];
 If ToUpper(ArrayString) = ToUpper(SearchString) then
 begin
 SaveToFile(ArrayString); // Keyword "Call" not valid
 NumberFound := NumberFound + 1;
 end;
 end;

 Result := NumberFound; // ScanArray := NumberFound
end.

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 11 of 12

Q4 (b): Python

def ScanArray(SearchString):

 # ArrayIndex : integer
 # ArrayString : string
 # NumberFound : integer

 NumberFound = 0

 for ArrayIndex in range(NumElements): # 0 to NumElements-1
 ArrayString = ResultArray[ArrayIndex][0]
 if ArrayString.upper == SearchString.upper:
 SaveToFile(ArrayString) # Keyword "Call" not valid
 NumberFound = NumberFound + 1

 return NumberFound # ScanArray := NumberFound

9608/21 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November
2018

© UCLES 2018 Page 12 of 12

Q4 (d): Visual Basic

Dim ResultArray(100, 2) As String
Dim I, j As Integer

For i = 1 to 100
 For j = 1 to 2
 ResultArray(i, j) = '*'
 Next j
Next i

Q4 (d): Pascal

var
 ResultArray : array[1..100, 1..2] of string;
 i, j : integer;
 begin
 For i := 1 to 100 do
 For j := 1 to 2 do
 begin
 ResultArray[i, j] := '*';
 end;
 end.

Q4 (d): Python

ResultArray[1..100, 1..2] : String

 ResultArray = [[0] * 2 for i in range(100)]

 for i in range(100):
 for j in range(2):
 ResultArray[i][j] = '*'

Q4 (d): Python – alternative 1 of n

ResultArray[1..100, 1..2] : String

 ResultArray = [['*'] * 2 for i in range(100)]

Q4 (d): Python – alternative 2 of n

ResultArray[1..100, 1..2] : String

 ResultArray = [['*'] * 2] * 100

