Cambridge International Examinations International AS & A Level

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
	COMPUTER SO	CIENCE		9608/11
ω	Paper 1 Theory	/ Fundamentals	Oc	tober/November 2018
4				1 hour 30 minutes
б И	Candidates ans	wer on the Question Paper.		
4	No Additional M	laterials are required.		
٥ 	No calculators a	allowed.		

READ THESE INSTRUCTIONS FIRST

ſ

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 15 printed pages and 1 blank page.

- 1 A student is creating a short video and needs to record music to play in the background.
 - (a) The student uses a microphone to capture the music.

Explain how the microphone captures the music.

.....[3] (b) An analogue-to-digital converter uses sampling to encode the sound. Explain how different sampling resolutions affect the sound file and the sound it represents.[3] (c) The student needs to edit the sound file. Describe two features of sound editing software that can be used to edit the sound file. Feature 1 Feature 2

(d) The video is recorded with a frame rate of 60 frames per second (fps) and uses progressive encoding.
(i) Describe what is meant by a frame rate of 60 fps.
[1]
(ii) Describe what is meant by progressive encoding in video recording.
[2]
(e) MP4 multimedia container format is used to save the video.
State what is meant by multimedia container format.

[Turn over

- 2 Computer **A** needs to access a web page.
 - (a) State how Computer A could access the web page without using a Domain Name Service (DNS).

.....

(b) (i) The following table shows four IPv6 addresses.

State if each address is valid or invalid.

IP address	Valid or invalid
21E5:69AA:FFFF:1:E100:B691:1285:F56E	
::255.255.255.255	
59FB::1005:CC57:6571	
56FE::2159:5BBC::6594	

[4]

(ii) The following table shows four statements about either public or private IP addresses.

Tick (\checkmark) **one** box in each row to indicate whether each statement refers to a public or a private IP address.

Statement	Public	Private
192.168.2.1 is an example of this type of address		
Assigned by the Internet Service Provider (ISP)		
IP address cannot be duplicated in different networks		
Network Address Translation (NAT) is necessary to access the Internet directly		

[4]

(c) One type of transmission media is copper cable.

Give **two** additional types of transmission media.

1 2 [2]

- **3** Hugo has produced a program (app) for mobile phones. He needs to decide whether to use an Open Source licence or to distribute the app as shareware.
 - (a) Describe what is meant by **Open Source licence** and **shareware**.

Open Source
Shareware
[4]
[4]
[4]
[4] Tick (✓) one box to indicate the licence Hugo should use. Justify your choice.
[4] Tick (✓) one box to indicate the licence Hugo should use. Justify your choice.
[4] Tick (✓) one box to indicate the licence Hugo should use. Justify your choice. Open Source Shareware
[4] Tick (✓) one box to indicate the licence Hugo should use. Justify your choice. Open Source Shareware Justification
[4] Tick (✓) one box to indicate the licence Hugo should use. Justify your choice. Open Source

(b)

4 The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an index register (IX).

Inst	truction	Explanation			
Op code	Operand	Explanation			
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC.			
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>			
LDR	#n	Immediate addressing. Load the number n to IX.			
STO	<address></address>	Store contents of ACC at the given address.			
ADD	<address></address>	Add the contents of the given address to ACC.			
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).			
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).			
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>			
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>			
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False.</address>			
JMP	<address></address>	Jump to the given address.			
OUT		Output to the screen the character whose ASCII value is stored in ACC.			
END		Return control to the operating system.			

(a) (i) State what is meant by direct addressing and indirect addressing.

irect addressing	
direct addressing	

(ii) Explain how the instruction ADD 20 can be interpreted as either direct or indirect addressing.

Direct addressing

[2]

(b) The assembly language instructions in the following table use either symbolic addressing or absolute addressing.

Tick (\checkmark) **one** box in each row to indicate whether the instruction uses symbolic or absolute addressing.

Instruction	Symbolic	Absolute
ADD 90		
CMP found		
STO 20		

[2]

(c) The current contents of a general purpose register (X) are:

Х	1	0	1	1	1	0	1	0	
---	---	---	---	---	---	---	---	---	--

(i) The contents of X represent an unsigned binary integer.

Convert the value in X into denary.

	[1]
(ii)	The contents of X represent an unsigned binary integer.
	Convert the value in X into hexadecimal.
	[1]
(iii)	The contents of X represent a two's complement binary integer.
	Convert the value in X into denary.
	[1]

(d) The current contents of the main memory, Index Register (IX) and selected values from the ASCII character set are provided with a copy of the instruction set.

133

134

Address	Instruction
70	LDX 200
71	OUT
72	STO 203
73	LDD 204
74	INC ACC
75	STO 204
76	INC IX
77	LDX 200
78	CMP 203
79	JPN 81
80	OUT
81	LDD 204
82	CMP 205
83	JPN 74
84	END
200	130
201	133
202	130
203	0
204	0
205	2
]
IX	0

ASCII code table (selected codes only) ASCII code Character 127 ? 128 ! 129 " 130 * 131 \$ 132 &

Instruction set

%

/

In	struction	
Op code	Operand	Explanation
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC.
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>
LDR	#n	Immediate addressing. Load the number n to IX.
STO	<address></address>	Store contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False.</address>
JMP	<address></address>	Jump to the given address.
OUT		Output to the screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

Instruction	ACC	Memory address					IV			
address	ACC	200	201	202	203	204	205		IX OUTPUT 0	
70	130	130	133	130	0	0	2	0		

Complete the trace table for the given assembly language program.

[8]

- 5 For each of the following scenarios, tick (✓) **one** box for each scenario to indicate whether you think the person's behaviour is ethical or unethical. Justify your choice.
 - (a) Kevin is a software engineer who has recently started a job with a new company. He is using program code from his previous employer in his new employer's programs.

Ethical	
Unethical	
Justification	
	[2]

(b) Nadya is a software developer. She has accepted a new job. She has never worked with the programming languages used by this new company. Nadya is planning to increase her knowledge of these programming languages before she starts her new job.

Ethical	
Unethical	

Justification

.....

-[2]
- (c) Maria finds that one of her team members has produced some inventive code. She presents this to her manager, stating that it was produced by the team. She does not mention the individual's name.

Ethical	
Unethical	

 6 A web page includes the following PHP and HTML code.

```
01 <?php
02
     if(isset($ GET['age'])) {
03
       echo "Result: ", allowed($_GET['age']);
04
    } else {
05 ?>
06
07 <form action="#" method="get">
8 0
     Enter Age: <input type="text" name="age" /><br/>
     <input type="submit" value="Calculate" />
09
10 </form>
11
12 <?php
13
      }
14
      function allowed($age) {
15
         if($age <= 16) $message = "You need permission";</pre>
         else if($age > 30) $message = "You are too old";
16
17
         else $message = "Allowed";
18
         return $message;
19
      }
20 ?>
(a) Name two identifiers used in the PHP code.
  1 .....
  2 .....
                                                   [2]
(b) Write the value assigned to $message if the user types 30 in the text box.
  .....[1]
(c) Explain the purpose of the code in line 18.
  .....[2]
```

(d) The PHP code in a web page uses server-side scripting.

List the sequence of events that take place when a user requests a web page containing PHP code.

 [4]
 ·····[_]

Question 7 begins on the next page.

13

7 A movie theatre has a relational database that stores the movie schedule, and information about the movies. The theatre has several screens that play movies at the same time.

The database has three tables to store information about the movies, the screens and the movie schedule.

MOVIE(MovieID, Title, Length, Rating)
SCREEN(ScreenNumber, NumberSeats)
MOVIESCHEDULE(ScheduleID, MovieID, ScreenNumber, Time)

(a) Complete the entity-relationship (E-R) diagram to show the relationships between these tables.

MOVIE		SCREEN
	MOVIESCHEDULE	

(b) Explain how primary and foreign keys are used to link the tables in the movie theatre database.

[2]

(c) The database needs to store the name of the company that produced each movie, for example, Rocking Movies.

Write an SQL script to add the attribute ProductionCompany to the MOVIE table.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.