Cambridge International Examinations International AS & A Level

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 15 printed pages and 1 blank page.

- 1 In a computer system, real numbers are stored using normalised floating-point representation with:
 - 12 bits for the mantissa
 - 4 bits for the exponent
 - Two's complement form for both mantissa and exponent.
 - (a) Find the denary value for the following binary floating-point number.

					Man	tissa										Ехро	onen	t	
1	0	1	1	1	0	0	1	1	0	1	0				0	1	0	1	
	·····	king .																	
																			[3]
(b)	Calc work		the	norr	nalis	ed fl	oatir	ig-po	int r	epre	senta	tion o	of 5.2	25 in	this s	syste	m. S	how	your
	Work	king .																	
					Mant	tissa										Ехро	onen	t	

(c) The size of the mantissa is decreased and the size of the exponent is increased.

State how this affects the range and precision of the numbers that the computer system can represent.

.....[1]

(d)	Describe two different composite data types.
	Data type 1
	Description
	Data type 2
	Description
	[4]
	[4]

4

3 Star and bus are two types of topology that can be used in a Local Area Network (LAN).

Star topology

(b) The sequence of steps 1 to 7 describes what happens when the LAN transmits data from Computer X to Computer Y using circuit switching. Four statements (4 to 7) are missing from the sequence.

Α	Computer X sends the data.
В	The sender signals node to deallocate resources.
С	Computer Y sends a receipt signal.
D	If available, Computer X sets up path between nodes.

Write one letter (A to D) in the appropriate space to complete the sequence.

- 1 Computer X sends a connection request to Computer Y.
- 2 Computer Y sends ready or busy signal.
- 3 If busy, Computer X waits and then resends the connection request to Computer Y.
- 4
- 5
- 6
- 7

[3]

(c) (i) Protocols are essential for successful transmission of data over a network. The TCP/IP protocol suite operates on many layers.

State the appropriate layer for each protocol in the following table.

Protocol	Layer
ТСР	
IP	
SMTP	

[3]

(ii) Peer-to-peer (P2P) file sharing uses the BitTorrent protocol.

Explain how the BitTorrent protocol allows files to be shared.

Question 4 begins on the next page.

	INPUT					
Α	В	С	X			
0	0	0	0			
0	0	1	0			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	0			
1	1	1	0			

4 (a) A Boolean expression produces the following truth table.

(i) Write the Boolean expression for the truth table as a sum-of-products.

X =[2]

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (a)(i).

		AB						
		00	01	11	10			
0	0							
С	1							

[1]

The K-map can be used to simplify the function in part (a)(i).

- (iii) Draw loop(s) around appropriate group(s) of 1s to produce an optimal sum-of-products for the table in **part (a)(ii)**. [2]
- (iv) Write the simplified sum-of-products expression for your answer to part (a)(iii).

X =[2]

	INPUT					
Α	В	С	D	X		
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	0		
1	1	1	1	0		

(b) A logic circuit with four inputs produces the following truth table.

(i) Complete the K-map that corresponds to the truth table.

[4]

- (ii) Draw loop(s) around appropriate group(s) of 1s to produce an optimal sum-of-products for the table in part (b)(i). [2]
- (iii) Write the simplified sum-of-products expression for your answer to part (b)(ii).

- 5 The following syntax diagrams show the syntax of:
 - an assignment statement
 - a variable
 - a signed integer
 - a letter
 - a digit
 - an operator

(a)	The	following assignment statements are invalid.	
	Give	e the reason in each case.	
	(i)	$xy = xy \wedge c4$	
		Reason	
		[1]]
	(ii)	zy = zy \ 10	
		Reason	
		[1]]
	(iii)	yy := xz ^ - 6	
		Reason	•
		[1]
(b)	Con	nplete the Backus-Naur Form (BNF) for the syntax diagrams on the opposite page.	
()		signment statement> ::=	
		-	
	<va< th=""><th>riable> ::=</th><th></th></va<>	riable> ::=	
	<si< th=""><th>gned integer> ::=</th><th></th></si<>	gned integer> ::=	
	<op< th=""><th>erator> ::=</th><th></th></op<>	erator> ::=	
		[4]]
(c)	Rev	rite the BNF rule for a variable so that it can be any number of letters.	
	<va< th=""><th>riable> ::=</th><th></th></va<>	riable> ::=	
		[2]]

- 6 A company specialises in educational software.
 - (a) The company is concerned that malware might disrupt their business.
 - (i) Add appropriate descriptions and terms in the table.

	Description	Term
Α	Redirection to a bogus website that appears to be legitimate to gain confidential data.	
В	Use email to attempt to gain a user's confidential data.	
С		Spyware
D		Worm

[4]

(ii) A member of staff is using the Internet to carry out research. They are worried about the threat from terms **A** and **B**.

Identify **one** solution to the each of the threats.

Term A	
Torm D	
Term B	
	[2]

(b) A customer downloads a new educational software package from the company.

Explain how the customer's and the company's computers use a hashing algorithm to assure the customer that:

- the software has come from the company (is authentic) and
- no one has altered it.

[4]

The museum is not sure about the actual temperatures. The museum installs some equipment. This records the temperatures every hour and ensures the temperature stays within a set range.

(a) Identify the type of system described.

.....[1]

(b) The system has a temperature sensor.

Identify two other items of hardware that the museum can use for the type of system identified.

Describe the purpose of each item.

1	
ose	
2	
ose	
	[4]

(c) The equipment records the temperature in all seven rooms in the museum.

Each recording is stored as two successive bytes in memory. The format is as shown.

The room is indicated by the setting of one of the bits in **Byte 2** to 1. For example, room 7 is indicated by setting bit 7 to 1.

Bit 0 of **Byte 2** is a flag:

- The flag's initial value is zero.
- When the reading has been processed, the flag's value is set to 1.

Byte 1 contains the temperature reading as an unsigned integer.

Temperature											Ro	om							
											7	6	5	4	3	2	1	0	
1	0	1	1	0	0	1	1				0	0	1	0	0	0	0	1	
Byte 1												By	te 2				-		
(i) Analyse the data contained in the two bytes.																			
																			[3]
(ii)	i) The system receives a temperature reading of 238 from room number 4.																	
	Complete the bytes to show the two bytes for this recording. The reading has not yet been processed.																		
											7	6	5	4	3	2	1	0	

Byte 1

7	6	5	4	3	2	1	0				
Byte 2											
			-					[2]			

One reading returns the following binary data.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.