

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

0620/23 **CHEMISTRY**

Paper 2 Multiple Choice (Extended) May/June 2018

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO **NOT** WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

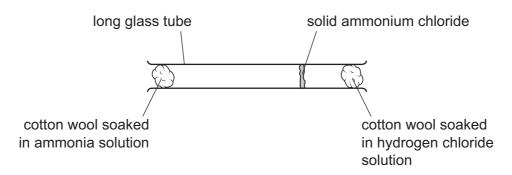
Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 14 printed pages and 2 blank pages.



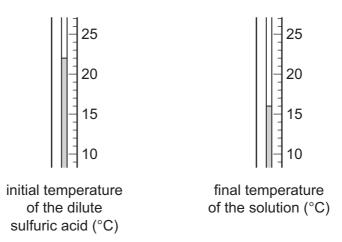
1 Ammonia gas is reacted with hydrogen chloride gas using the apparatus shown.

Solid ammonium chloride is produced.

Which statement explains why the solid ammonium chloride is formed nearer to the hydrogen chloride?

- **A** Ammonia solution is a base and hydrogen chloride solution is an acid.
- **B** Ammonia molecules diffuse more slowly than hydrogen chloride molecules.
- **C** Hydrogen chloride has a greater molecular mass than ammonia.
- **D** Hydrogen chloride moves by Brownian motion.
- **2** Paper chromatography is done in the same way with three different mixtures of dyes. Each mixture contains at least one of the dyes W, X, Y and Z.

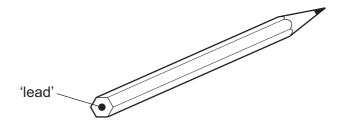
The R_f values of the dyes in the three mixtures are shown.


dye	R _f values from mixture 1	R _f values from mixture 2	R _f values from mixture 3
W	0.15	0.15	0.15
Х	0.00	0.00	0.00
Υ	0.50	0.50	0.50
Z	0.00	0.91	0.91

Which conclusion is correct?

- **A** Dye W is nearest the solvent front and is present only in mixture 1 and mixture 3.
- **B** Dye X has travelled furthest up the chromatography paper.
- **C** Dye Y is the only dye present in all three mixtures.
- **D** Dye Z is nearest the solvent front and is found in only two of the mixtures.

3 Solid R reacted with dilute sulfuric acid.


The initial temperature of the dilute sulfuric acid and the final temperature of the solution are shown.

What was the change in temperature in °C?

- \mathbf{A} -6
- **B** -4
- **C** 4
- **D** 6

4 The 'lead' in a pencil is made of a mixture of graphite and clay.

When the percentage of graphite is increased, the pencil slides across the paper more easily.

Which statement explains this observation?

- A Graphite has a high melting point.
- **B** Graphite is a form of carbon.
- **C** Graphite is a lubricant.
- **D** Graphite is a non-metal.
- 5 Iron has an atomic number of 26. It occurs as the isotopes ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe and ⁵⁸Fe.

Which statement explains why these isotopes have the same chemical properties?

- A They have similar mass numbers.
- **B** They have the same number of electrons in their outer shells.
- **C** They have the same number of neutrons in their nuclei.
- **D** They have the same number of protons in their nuclei.

6	Hον	w many silicon a	toms	s are bonded to	each	n oxygen atom in	ас	rystal of silicon(IV) oxide?
	Α	1	В	2	С	3	D	4
7	Wh	ich substance is	not	a macromolecu	le?			
	A	diamond						
	В	graphite						
	С	silicon(IV) oxid	е					
	D	sulfur						
8		•				ormula of a hydro		•
		bon dioxide and				was burned in ar	n ex	cess of oxygen to form 20 cm ³ of
	Wh	at is C _x H _y ?						
	Α	CH ₄	В	C ₂ H ₄	С	C_2H_6	D	C ₃ H ₈
9	4.0 0.2	0g of solid sodi 00 mol/dm³.	um	hydroxide is ad	ded	to water to make	ке а	solution with a concentration of
	Wh	at is the volume	of w	ater used?				
	Α	$0.5\mathrm{cm}^3$	В	20 cm ³	С	500 cm ³	D	2000 cm ³
10	Aqı	ueous copper(II)	sulf	ate is electrolyse	ed u	sing copper elec	trod	es.
	Wh	ich statement is	corr	ect?				
	Α	Oxygen gas is	prod	uced at the posi	tive	electrode.		
	В	The blue colour	r of t	he solution grad	ually	y fades.		
	С	The concentrat	ion d	of copper ions in	the	solution stays th	e sa	ime.
	D	The mass of the	e ne	gative electrode	dec	reases.		

11 Dilute sulfuric acid is electrolysed using inert electrodes.

What are the ionic half-equations for the reactions that take place at each electrode?

	positive electrode	negative electrode
Α	$2H^{+} + 2e^{-} \rightarrow H_{2}$	$4OH^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$
В	$2H^{+} + 2e^{-} \rightarrow H_{2}$	$4OH^- + 4H^+ \rightarrow 4H_2O$
С	$4OH^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$	$2H^{+} + 2e^{-} \rightarrow H_{2}$
D	$4OH^- + 4H^+ \rightarrow 4H_2O$	$2H^{+} + 2e^{-} \rightarrow H_{2}$

- **12** Information about two reactions is given.
 - The neutralisation reaction between citric acid and sodium hydrogencarbonate is endothermic.
 - The displacement reaction between magnesium and carbon dioxide is exothermic.

Which statements about the two reactions are correct?

- The energy of the products formed in the neutralisation reaction is greater than the energy of the reactants.
- 2 The energy of magnesium and carbon dioxide is greater than the energy of magnesium oxide and carbon.
- 3 In an exothermic reaction, the energy required to break the bonds is greater than the energy released when the new bonds are formed.
- **A** 1, 2 and 3
- **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- **13** Ethene reacts with hydrogen. The equation is shown.

$$CH_2=CH_2 + H_2 \rightarrow C_2H_6$$

The bond energies are shown in the table. The reaction is exothermic.

bond	bond energy in kJ/mol
C–C	+350
C=C	+610
C–H	+410
H–H	+436

What is the energy change for the reaction?

- **A** -560 kJ/mol **B** -124 kJ/mol
- **C** +486 kJ/mol **D** +5496 kJ/mol

14 Which row describes the effects of increasing both concentration and temperature on the collisions between reacting particles?

	increasing concentration	increasing temperature
Α	more collisions per second only	more collisions per second only
В	more collisions per second and more collisions with sufficient energy to react	more collisions per second only
С	more collisions per second only	more collisions per second and more collisions with sufficient energy to react
D	more collisions per second and more collisions with sufficient energy to react	more collisions per second and more collisions with sufficient energy to react

15 In the Contact process, sulfur dioxide is converted into sulfur trioxide in a reversible reaction.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The forward reaction is exothermic.

Which conditions give the highest yield of sulfur trioxide at equilibrium?

	pressure / atmospheres	temperature
Α	0.5	high
В	0.5	low
С	1.5	high
D	1.5	low

16 The equation for a redox reaction is shown.

$$2Fe^{3+}$$
 + $Zn \rightarrow 2Fe^{2+}$ + Zn^{2+}

Which statements are correct?

- 1 Fe³⁺ is reduced to form Fe²⁺.
- 2 Zn oxidises the Fe³⁺ ions.
- 3 Fe³⁺ is an oxidising agent.

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

- 17 Which statement about oxides is correct?
 - A A solution of magnesium oxide has a pH less than pH 7.
 - **B** A solution of sulfur dioxide has a pH greater than pH 7.
 - **C** Magnesium oxide reacts with nitric acid to make a salt.
 - **D** Sulfur dioxide reacts with hydrochloric acid to make a salt.
- **18** The equation represents an equilibrium in aqueous ammonia.

$$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

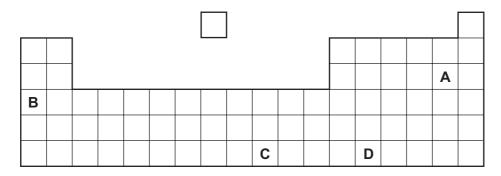
How does aqueous ammonia behave in this reaction?

- A as a strong acid
- B as a strong base
- C as a weak acid
- D as a weak base
- **19** An excess of aqueous sodium sulfate was added to aqueous barium chloride and the mixture was filtered.

Which row shows the identity of the residue and the substances present in the filtrate?

	residue	substances in filtrate
Α	barium sulfate	barium chloride and sodium chloride
В	barium sulfate	sodium chloride and sodium sulfate
С	sodium chloride	barium chloride and sodium sulfate
D	sodium chloride	barium sulfate and sodium sulfate

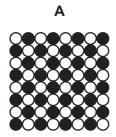
- 20 Which methods are suitable for preparing **both** zinc sulfate and copper(II) sulfate?
 - 1 reacting the metal oxide with warm dilute aqueous sulfuric acid
 - 2 reacting the metal with dilute aqueous sulfuric acid
 - 3 reacting the metal carbonate with dilute aqueous sulfuric acid
 - **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

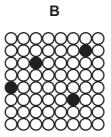

								_
21	\//hich	alamant id	s classified	as a non	∟metal in	the Perio	ndic T	¹ahle?
	V V I II CI I		o Glassilica	43 4 HOH	-iiiciai iii		Juic i	abic:

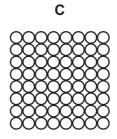
- A calcium
- **B** chlorine
- **C** chromium
- **D** copper

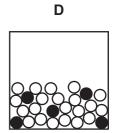
22 Part of the Periodic Table is shown.

Element Q has a low boiling point, low density and does not conduct electricity.


Which element is Q?




23 Which row describes a typical transition element?


	density in g/cm ³	melting point in °C	boiling point in °C	colour of oxide
Α	0.97	98	883	white
В	2.64	769	1382	white
С	3.10	- 7	59	yellow
D	8.96	1085	2562	red

24 Which diagram represents a solid alloy?

25 The ionic equations for four reactions are shown.

$$Z + X^{2+} \rightarrow Z^{2+} + X$$
 $Z + 2W^{+} \rightarrow Z^{2+} + 2W$
 $X + 2W^{+} \rightarrow X^{2+} + 2W$
 $Y + Z^{2+} \rightarrow Y^{2+} + Z$

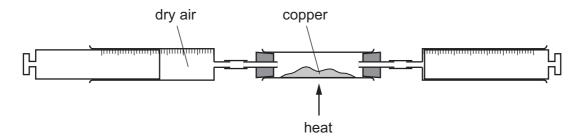
What is the order of reactivity of the four metals, W, X, Y and Z?

	most reactiv	r	least eactive	
Α	W	Х	Z	Y
В	Х	W	Υ	Z
С	Υ	Z	Х	W
D	Z	W	Χ	Y

26 Which equation represents the first stage in the extraction of zinc from zinc blende?

A
$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

$$\textbf{B} \quad ZnS \, + \, H_2O \, \rightarrow \, ZnO \, + \, H_2S$$


$$\mathbf{C}$$
 ZnO + CO \rightarrow Zn + CO₂

$$\textbf{D} \quad ZnO \ + \ H_2SO_4 \ \rightarrow \ ZnSO_4 \ + \ H_2O$$

27 Which statement explains why aluminium is used to manufacture aircraft?

- **A** It has a low density.
- **B** It is a good conductor of electricity.
- **C** It is a good conductor of heat.
- **D** It is ductile.

28 Dry air is passed over hot copper until all the oxygen has reacted.

The volume of gas at the end of the reaction is 120 cm³.

What is the starting volume of dry air?

- **A** 132 cm³
- **B** 152 cm³
- **C** 180 cm³
- **D** 570 cm³

29 A steel bicycle which had been left outdoors for several months was starting to rust.

What would **not** reduce the rate of corrosion?

- A Remove the rust and paint the bicycle.
- **B** Remove the rust and store the bicycle in a dry shed.
- **C** Remove the rust and wipe the bicycle with a clean, damp cloth.
- **D** Remove the rust and wipe the bicycle with an oily cloth.
- 30 Which statements about water are correct?
 - 1 Household water contains dissolved salts.
 - 2 Water for household use is filtered to remove soluble impurities.
 - 3 Water is treated with chlorine to kill bacteria.
 - 4 Water is used in industry for cooling.
 - **A** 1, 2, 3 and 4
 - **B** 1, 2 and 3 only
 - C 1, 3 and 4 only
 - **D** 2, 3 and 4 only

31 Ammonia is manufactured by reacting hydrogen with nitrogen in the Haber process.

Which row describes the sources of hydrogen and nitrogen and the conditions used in the manufacture of ammonia in the Haber process?

	source of hydrogen	source of nitrogen	temperature of reaction/°C	pressure of reaction/atm
Α	air	natural gas	250	2
В	air	natural gas	250	200
С	natural gas	air	450	2
D	natural gas	air	450	200

- 32 Which statements about the carbon cycle are correct?
 - 1 Carbon dioxide is added to the atmosphere by respiration.
 - 2 Carbon dioxide is added to the atmosphere by combustion of coal.
 - 3 Carbon dioxide is removed from the atmosphere by photosynthesis.
 - **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- **33** Element Z forms an oxide, ZO₂. Three uses of ZO₂ are listed.
 - bleaching agent
 - killing bacteria
 - manufacturing an important acid

What is Z?

- **A** carbon
- **B** lead
- C nitrogen
- **D** sulfur

	34	Limestone is	an important	t material with	many uses
--	----	--------------	--------------	-----------------	-----------

Limestone is heated to produce1..... and carbon dioxide.

This reaction is called2......

Which words correctly complete gaps 1 and 2?

	1	2
Α	lime	neutralisation
В	lime	thermal decomposition
С	slaked lime	neutralisation
D	slaked lime	thermal decomposition

35 What is **not** the correct use of the fraction named?

	name of fraction	use
Α	fuel oil	making waxes
В	gas oil	fuel in diesel engines
С	kerosene	jet fuel
D	naphtha	making chemicals

36 Methane, ethane and propane belong to a family of hydrocarbons called alkanes.

What is the general formula of an alkane?

Α.	\sim	
А	Un	ฅวก

 $\mathbf{B} \quad \mathsf{C}_{\mathsf{n}}\mathsf{H}_{\mathsf{2n+1}}$

C	C_nH_{2n-1}	
•	Oni i2n-1	

 \mathbf{D} C_nH_{2n+2}

37 Which substances can be obtained by cracking hydrocarbons?

A ethanol and ethene

B ethanol and hydrogen

C ethene and hydrogen

D ethene and poly(ethene)

38 Which row describes an advantage and a disadvantage of making ethanol by fermentation?

	advantage	disadvantage
Α	uses a renewable resource	occurs at a slow rate
В	needs a high temperature	produces impure ethanol as a product
С	produces pure ethanol as a product	needs a high temperature
D	occurs at a slow rate	uses a non-renewable resource

- **39** Which esters have the molecular formula $C_5H_{10}O_2$?
 - 1 ethyl propanoate
 - 2 propyl ethanoate
 - 3 butyl methanoate
 - 4 methyl butanoate
 - **A** 1, 2, 3 and 4
 - **B** 1, 2 and 3 only
 - C 1 and 2 only
 - **D** 3 and 4 only
- **40** A polymer linkage contains carbon, hydrogen, nitrogen and oxygen atoms.

Which row about the polymer is correct?

	type of polymer	formed by
Α	polyamide	addition polymerisation
В	polyamide	condensation polymerisation
С	polyester	addition polymerisation
D	polyester	condensation polymerisation

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

=

The Periodic Table of Elements

Group																	
1	П		III IV V VI VII														VIII
	T H hydrogen 1														2 He		
3 Li lithium 7	4 Be beryllium 9		ato	atomic numbe mic sym	bol			1				5 B boron	6 C carbon 12	7 N nitrogen 14	8 O oxygen 16	9 F fluorine 19	10 Ne neon 20
11 Na sodium 23	12 Mg magnesium 24					I						13 Al aluminium 27	14 Si silicon 28	15 P phosphorus 31	16 S sulfur 32	17 Cl chlorine 35.5	18 Ar argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium —	astatine -	radon —
87	88	89–103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F1		Lv		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
_	_		_	_	_	_	_	_	_		_		_		-		

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium —	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	actinium -	thorium 232	protactinium 231	uranium 238	neptunium —	plutonium —	americium –	curium –	berkelium –	californium –	einsteinium –	fermium –	mendelevium –	nobelium –	lawrencium -

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).