

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

IGUUL			
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			0580/33
Paper 3 (Core)			May/June 2018
			2 hours
Candidates answer or	the Question Paper.		
Additional Materials:	Electronic calculator	Geometrical instruments	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

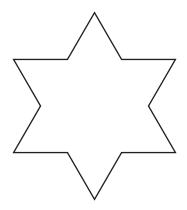
At the end of the examination, fasten all your work securely together.

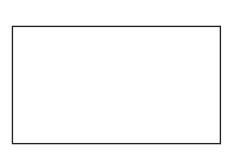
The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 104.

1 (a) The table shows the temperature at Lexford Station at 1000 each day for a week.

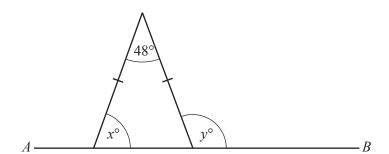
Day	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Temperature (°C)	-3	4	-1	0	-5	2	1


	(°	C)	-3	4	-1	U	_3	2	1	
	(i)	Write down th	ne day whi	ch had the	e coldest te	mperature				
((ii)	Work out the	difference	in the tem	nperature b	etween Mo				[1]
										°C [1]
(i	iii)	The temperatu	ure falls 6°	°C from 10	000 to mid	night on S	unday.			
		Work out the	temperatu	re at midn	ight.					
										°C [1]
(b)	The	distance between	en Lexfor	d Station a	and Crowt	on Station	is 6.5 km.			
	(i)	A train travels						n/h.		
		Work out how	long, in r	ninutes, it	takes the t	rain to trav	el between	n these sta	tions.	
										min [3]
((ii)	Each wheel or	n the train	has a dian	neter of 1.3	3 m.				[-]
`	,	Work out the					kes in trav	elling the	6.5 km	
		., oil out tile	3111001 01			.,11001 1110				


[4]

(c)		abound train leaves leaves Lexford Station			30 minutes.			
	At 114	0 a northbound train	and a bus	leave the sta	ation togeth	er.		
	Find th	e next time when th	is happens.					
								503
								[3]
(d)	Here is	part of a timetable	for trains go	oing east to	west from I	Lexford Stat	ion.	
		Lexford	09 14	0947	1021	11 15	11 48	
		Crowton	0926	0959	1033	11 27	1200	
		Doniton Halt	0942	1015	1049	1143	1216	
		Mosshead	1001	1034	11 08	1202	1235	
	(i) W	ork out the number	of minutes	the 09 14 tr	ain takes to	travel from	Lexford to N	Mosshead.
								min [1]
	(ii) Fr	reda must arrive at N	Aosshead by	y 11 30		•••••	•••••	
					· C I	C 1		
	W	rite down the latest	time sne ca	n catch a tr	am from Le	xiora.		
								[1]
(e)		ople go on a coach t oach seats 62 people						
		nany coaches are nee						
	110W III	iany couches are nec	aca:					

.....[2]

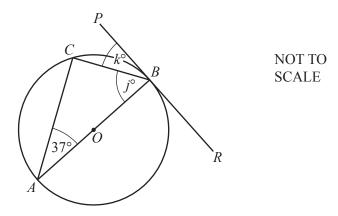

2 (a) Draw all the lines of symmetry on each shape.

[4]

(b) The diagram shows an isosceles triangle and a straight line *AB*.

NOT TO SCALE

Find the value of x and the value of y.

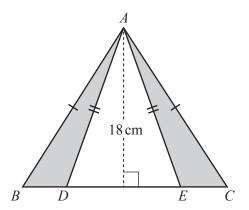

x =	

$$y = \dots$$
 [2]

(c) Find the size of one interior angle of a regular decagon.

 [3]

(d)



The points A, B and C lie on the circumference of a circle, centre O. PBR is a tangent to the circle and angle $BAC = 37^{\circ}$.

Find the value of j and the value of k.

<i>j</i> =	
k =	 [3]

(e)

NOT TO SCALE

ABC and ADE are isosceles triangles, each with perpendicular height 18 cm. BC = 35 cm and DE = 27 cm.

Find the total area of the two shaded parts of the diagram.

..... cm² [3]

3 (a) A museum's opening times are shown in this table.

Day	Opening times
Monday to Thursday	09 00 to 17 00
Friday	0830 to 1800
Saturday	0900 to 1900
Sunday	Closed

Work out how many hours in a week the museum is open for.

 	hours	[3]

(b) The table shows the cost of tickets for the museum.

	Cost
Adult	\$4.20
Senior (aged over 60)	\$2.80
Child (aged 5 to 15)	\$1.80
Child (aged under 5)	Free

The Reeve family visit the museum.

Mrs Reeve is aged 36, her father is 67, her mother is 65, and her three children are 2, 7 and 12.

Work out the total cost for these six people to visit the museum.

\$ 	 [3

(c)	Mrs Reeve buys 6 ice creams. Each ice cream costs \$1.30.
	How much change does she receive from \$10?
	\$[2]
(d)	Last year, the museum had twenty seven thousand and fifty three visitors.
	Write this number in figures.
	[1]
(e)	In 2015, there were 12 400 visitors to the museum. In 2016, there were 14 100 visitors to the museum.
	in 2010, where were 11100 visitors to the interestin.
	Calculate the percentage increase in the number of visitors from 2015 to 2016.
	% [3]

- **(f)** The door to the museum has an 8-digit code to unlock it.
 - The next odd number after 35 gives digits 1 and 2.
 - The next prime number after 23 gives digits 3 and 4.
 - The square root of 225 gives digits 5 and 6.
 - The value of 2^6 gives digits 7 and 8.

Use this information to complete the door code.

Digits 1 and 2 have been completed for you.

Digit	1	2	3	4	5	6	7	8
Code	3	7						

[3]

(a) Solve these equations.	
(i) $3x = 18$ (ii) $8x - 15 = 6x + 2$	$x = \dots $ [1]
(b) Factorise. $5x-15$	$x = \dots $ [2]
(c) Simplify. $2x - 6y + 3x + 2y$	[1]
(d) Find the value of $5u-2v$ when $u = 11$ and $v = -3$.	[2]
	[2]

(e)	Make <i>p</i> the subject of this formula.	
		H = 7p - 3

$$p = \dots$$
 [2]

(f) (i) Find the value of k when $x^{10} \div x^k = x^3$.

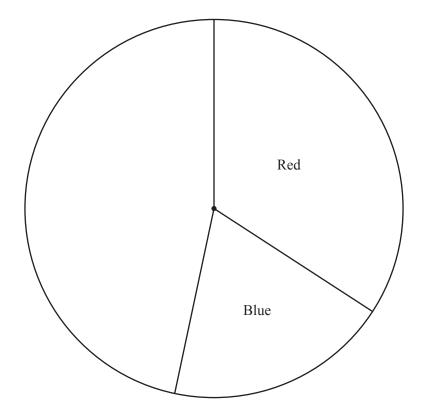
$$k = \dots$$
 [1]

(ii) Find the value of *n* when $y^{10} \times y^n = 1$.

$$n = \dots$$
 [1]

		3	1	8	5	7		2	1	(6		
Fin	d												
(i)	the	mode,											
									•••				
(ii)	the	range,											
()		6.,											
(***)	41	1'							•••	•			
(iii)	the	median.											
	. 4.1.1.	e shows the	number o	f goals	scored	by Ge	off's te	eam in	each g	game d	uring	one seaso	on.
) The	e table			-									
) The	e table											7	
) Th€		Number of goals		1	2	3	4	5	6	7	8		
) The	e table	Number of	f 0			3	6	5 4	6 5	7	8 2		
	}	Number of goals Number of games	f 0 5	7	8								
(i)	}	Number of goals Number of	f 0 5	7	8								
	}	Number of goals Number of games	f 0 5	7	8				5	3	2		
	}	Number of goals Number of games	f 0 5	7	8				5	3	2		
	Hov	Number of goals Number of games	f 0 f 5	1 7 e team p	2 8 olay?	10	6	4	5	3	2		
(i)	Hov	Number of goals Number of games	f 0 f 5	1 7 e team p	2 8 olay?	10	6	4	5	3	2		
(i)	Hov	Number of goals Number of games	f 0 f 5	1 7 e team p	2 8 olay?	10	6	4	5	3	2		
(i)	Hov	Number of goals Number of games	f 0 f 5	1 7 e team p	2 8 olay?	10	6	4	5	3	2		
(i)	Hov	Number of goals Number of games	f 0 f 5	1 7 e team p	2 8 olay?	10	6	4	5	3	2		
(i)	Hov	Number of goals Number of games	f 0 f 5	1 7 e team p	2 8 olay?	10	6	4	5	3	2		

(c) Geoff asks some supporters to choose a new colour for the team's shirts. The results are to be shown in a pie chart.

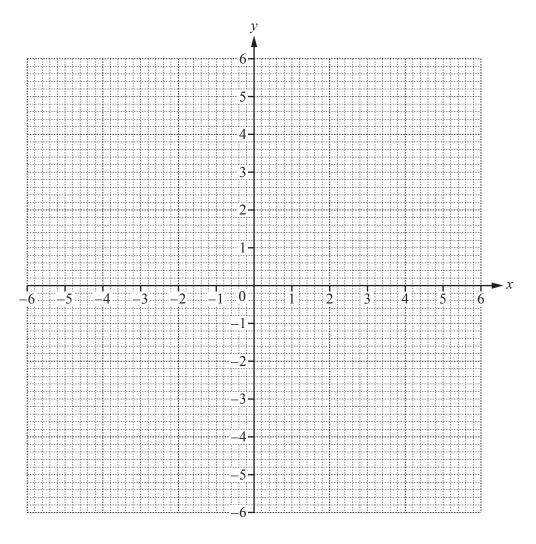

The table shows some of this information.

Colour	Frequency	Pie chart sector angle
Red	41	123°
Blue		69°
Green		
Other	18	54°

(i) Complete the table.

[3]

(ii) Complete the pie chart.


[1]

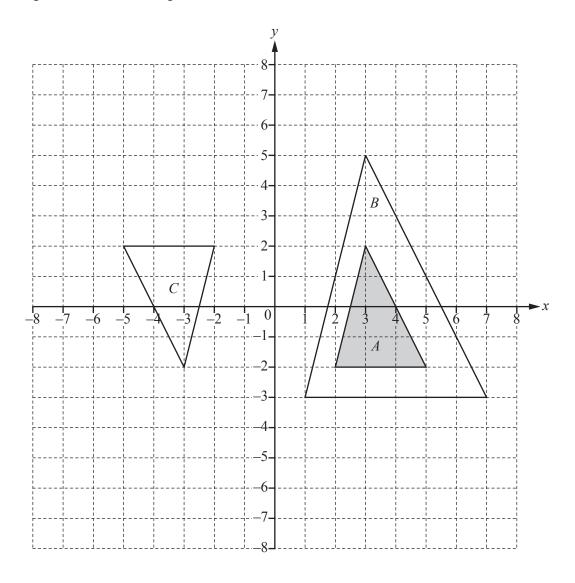
6 (a) Complete the table of values for $y = \frac{6}{x}$, $x \neq 0$.

x	-6	-4	-3	-2	-1	1	2	3	4	6
у		-1.5		-3			3		1.5	

[3]

(b) On the grid, draw the graph of $y = \frac{6}{x}$ for $-6 \le x \le -1$ and $1 \le x \le 6$.

[4]


(c) On the grid, draw the line y = -5.

[1]

(d) Use your graph to solve the equation $\frac{6}{x} = -5$.

 $x = \dots [1]$

7 The diagram shows three triangles A, B and C.

1	-1	Dagarila a full	41	tura a farma ati an	410 04 400 040 0	4 mi a m a 1 a 1	anta trianala D
l	a i	Describe full	v tne singie	transformation	that maps	triangle A	onto triangle B.

[2]

(b) Describe fully the **single** transformation that maps triangle A onto triangle C.

(c) Draw the image of

(i) triangle A after a translation by the vector
$$\binom{-6}{5}$$
, [2]

(ii) triangle A after a reflection in the line
$$y = -3$$
. [2]

Fine	d the p	robability that	the ball is				
(i)	greer	1,					
(ii)	greer	or red,					
(iii)	yello	W.					
		ag contains broaken from this			balls and pur	ple balls only.	
		Colour	Brown	White	Black	Purple	
		Probability	0.46	0.22	0.14		
		Probability	0.46	0.22	0.14		
(i)	Com	Probability plete the table.		0.22	0.14		
(i)	Com			0.22	0.14		
(i)	Com			0.22	0.14		
		plete the table.			0.14		
(i) (ii)					0.14		
		plete the table.			0.14		
	Whic	plete the table.	most likely to		0.14		
(ii)	Whice	plete the table.	most likely to	be taken?	0.14		
(ii)	Whice	plete the table. ch colour is the	most likely to	be taken?	0.14		
(ii)	Whice	plete the table. ch colour is the	most likely to	be taken?	0.14		

(a) Th	ese are t	ne first for	ır terms (of a sequ	uence.					
	(2)	E' 14			8	15	22	29			
	(i)	Find t	he next ter	m of this	s sequer	ice.					
											[1]
	(ii)	Descri	be the rul	e for con	tinuing	this sequ	ence.				
											[1]
	(iii)	Find a	n expressi	on for th	e nth te	rm of thi	s sequen	ce.			
(b) Fir	nd the fir	st three te	rms of an	other se	eauence v	whose nt	h term is <i>n</i>	$^{2}+10.$		[2]
						1					
(0) W.	ita daver	an expres	ssion for	the uth	torm of t			,	,	[2]
(c	, **1	ic dowi	ran expres	551011 101	1	8	27	64			
											[1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.