> 6 P O L 6 8 L G 9O 6 »

SRR Cambridge International Examinations
WO Cambridge International Advanced Level

A Level

CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER

COMPUTER SCIENCE

9608/43

Paper 4 Further Problem-solving and Programming Skills October/November 2016

Candidates answer on the Question Paper.
No Additional Materials are required.

No calculators allowed.

2 hours

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.
No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 16 printed pages.

CAMBRIDGE

International Examinations

DC (ST/SW) 129124
© UCLES 2016

[Turn over

2

1 A user can lock a safety deposit box by inputting a 4-digit code. The user can unlock the box with
the same 4-digit code.

There is a keypad on the door of the safety deposit box. The following diagram shows the keys on
the keypad.

1 3

6

9

o || o0 N

4
7
R

Enter

Initially, the safety deposit box door is open and the user has not set a code.

The operation of the safety deposit box is as follows:

A)

B)
C)
D)
E)

To set a new code the door must be open. The user chooses a 4-digit code and sets it by
pressing the numerical keys on the keypad, followed by the Enter key. Until the user clears
this code, it remains the same. (See point E below)

The user can only close the door if the user has set a code.

To lock the door, the user closes the door, enters the set code and presses the Enter key.

To unlock the door, the user enters the set code. The door then opens automatically.

The user clears the code by opening the door and pressing the R key, followed by the Enter
key. The user can then set a new code. (See point A above)

The following state transition table shows the transition from one state to another of the safety

deposit box:

Current state Event Next state
Door open, no code set 4-digit code entered Door open, code set
Door open, code set R entered Door open, no code set
Door open, code set Close door Door closed
Door closed Set code entered Door locked
Door locked Set code entered Door open, code set
Door locked R entered Door locked

© UCLES 2016 9608/43/0/N/16

(@) Complete the state-transition diagram.

Door open
no code set

Door closed

© UCLES 2016 9608/43/0/N/16 [Turn over

4

(b) A company wants to simulate the use of a safety deposit box. It will do this with object-oriented
programming (OOP).

The following diagram shows the design for the class SafetyDepositBox. This includes the
properties and methods.

SafetyDepositBox

Code : STRING // 4 digits
State : STRING // "Open-NoCode", "Open-CodeSet", "Closed"
// or "Locked"

Create () // method to create and initialise an object
// if using Python use init

Reset () // clears Code

SetState () // set state to parameter value
// and output new state

SetNewCode () // sets Code to parameter value

// output message and new code

StateChange () // reads keypad and takes appropriate action

Write program code for the following methods.

Programming [ANQUAGEcoiiiiiiiiiiiiii e e e e e e e e e e e e e e

(i) Create()

© UCLES 2016 9608/43/0/N/16

(ili) setstate()

.. [2]
(iv) SetNewCode ()

.. [2]
(v) The user must enter a 4-digit code.

Write program code for a function valid (s : STRING) that returns:

* TRUE if the input string s consists of exactly 4 digits

* FALSE otherwise

Programming [ANQUAGEcoouiiiiiiiiee oot

.. [4]

© UCLES 2016 9608/43/0/N/16 [Turn over

6
(vi) Convert the flowchart to program code for the method StateChange (). Use the

properties and methods in the original class definition and the valid () function from
part (v).

<:%ETHOD StateChang%:>

v

INPUT Chars

Is State =
"Open-CodeSet"?

CALL Reset()

v

CALL SetState("Open-NoCode") |f—

Is Chars = 'R'?

\ 4

Is State =
"Locked"?

Is Chars = Code?

CALL SetState("Open-CodeSet") | [P

Is State = CALL SetState("Locked") -
"Closed"?
|
Ll
) &
Is Chars = Yes
and State = P | CALL SetState("Closed") P
Open-CodeSet"2

Is State =
"Open-NoCode"?

Is Chars a valid

4-digit de? CALL SetNewCode(Chars)
-digit code?

v

CALL SetState("Open-CodeSet") | |

OUTPUT "Error — OUTPUT "Error —
code format does not match
incorrect" set code"

< v
A\ 4

<: ENDMETHOD :)

© UCLES 2016 9608/43/0/N/16

© UCLES 2016 9608/43/0/N/16 [Turn over

8
(vii) The company needs to write a program to simulate a safety deposit box. The program
will create an object with identifier ThisSafe, which is an instance of the class
SafetyDepositBox.
The main program design is:
instantiate ThisSafe (create and initialise ThisSafe)
loop forever (continually use ThisSafe)
call StateChange () method
end loop
Write program code for the main program.

Programming [ANQUAGEooiieiiiiiiiie et e e e e e e e

© UCLES 2016 9608/43/0/N/16

9
(c) ltis possible to declare properties and methods as either public or private.

The programmer has modified the class design for SafetyDepositBox as follows:

SafetyDepositBox
PRIVATE
Code : STRING

State : STRING

PUBLIC
Create ()
StateChange ()
PRIVATE
Reset ()
SetState ()
SetNewCode ()

(i) Describe the effects of declaring the SafetyDepositBox properties as private.

(ii) Describe the effects of declaring two methods of the class as public and the other three
as private.

© UCLES 2016 9608/43/0/N/16 [Turn over

10
2 Circle the programming language that you have studied:
Visual Basic (console mode) Python Pascal Delphi (console mode)

(@) (i) Name the programming environment you have used when typing in program code.

© UCLES 2016 9608/43/0/N/16

11

Question 2 continues on page 12.

© UCLES 2016 9608/43/0/N/16 [Turn over

12
(iii) The table shows a module definition for BinarySearch in three programming languages.

Study one of the examples. Indicate your choice by circling A, B or C:

A B C
A) Python
01 | def BinarySearch(List, Low, High, SearchItem):
02 Index = -1
03 while (Index == -1) AND (Low <= High):
04 Middle = (High + Low) // 2
05 if List[Middle] == SearchItem:
06 Index = Middle
07 elif List[Middle] < SearchItem:
08 Low = Middle + 1
09 else:
10 High = Middle - 1
11 return (Middle)
B) Pascal/Delphi
01 | FUNCTION BinarySearch (VAR List : ARRAY OF INTEGER; Low, High,
SearchItem : INTEGER) : INTEGER;
02 | VAR Index, Middle : INTEGER;
03 | BEGIN
04 Index := -1;
05 WHILE (Index = -1) & (Low <= High) DO
06 BEGIN
07 Middle := (High + Low) DIV 2;
08 IF List[Middle] = SearchItem
09 THEN Index := Middle
10 ELSE IF List[Middle] < SearchItem
11 THEN Low := Middle + 1
12 ELSE High := Middle - 1;
13 END;
14 Result := Middle;
15 | END;
C) Visual Basic
01 | Function BinarySearch (ByRef List () As Integer, ByVal Low As Integer,
ByVal High As Integer, ByVal SearchItem As Integer) As Integer
02 Dim Index, Middle As Integer
03 Index = -1
04 Do While (Index = -1) & (Low <= High)
05 Middle = (High + Low) \ 2
06 If List (Middle) = SearchItem Then
07 Index = Middle
08 ElseIf List (Middle) < SearchItem Then
09 Low = Middle + 1
10 Else
11 High = Middle - 1
12 End If
13 Loop
14 BinarySearch = Middle
15 | End Function

© UCLES 2016 9608/43/0/N/16

13
The programming environment reported a syntax error in the BinarySearch code.
State the INE NUMDET: ...

Write the correct code for this line.

(b) (i) State whether programs written in your programming language are compiled or
interpreted.

(ii) A programmer corrects the syntax error and tests the function. It does not perform as
expected when the search item is not in the list.

State the tYPE OF BITON: ..ot e e e e

Write down the line number where the error occurs.

... [2]
(iii) State the programming environment you have used when debugging program code.
Name two debugging features and describe how they are used.
R PPRRR
2 et eeeeeeeeeeeeeieeeeeeaaeeeeeeaasteeeeeanteteeeaasteeeeaateeeeeaasteeeeaaaeeeeeaaaneeeaansreeeeaanrreeeeanns
.. (4]

© UCLES 2016 9608/43/0/N/16 [Turn over

14

3 The following table shows part of the instruction set for a processor which has one general purpose
register, the Accumulator (ACC), and an index register (I1X).

Instruction
Explanation

Op Operand

code

LDM | #n Immediate addressing. Load the number n to ACC.

LDD | <address> Direct addressing. Load the contents of the given address to ACC.
Indexed addressing. Form the address from <address> + the contents

LDX | <address> of the index register. Copy the contents of this calculated address to
ACC.

LDR | #n Immediate addressing. Load the number n into IX.

STO | <address> Store the contents of ACC at the given address.

INC | <register> Add 1 to the contents of the register (ACC or IX).

DEC | <register> Subtract 1 from the contents of the register (ACC or 1X).

CMP | <address> Compare the contents of ACC with the contents of <address>.

CMP | #n Compare the contents of ACC with number n.

IPE caddresss Following a compare instruction, jump to <address> if the compare
was True.

JPN | <address> Following a compare instruction, jump to <address> if the compare
was False.
Output to the screen the character whose ASCII value is stored in

ouUT
ACC.

END Return control to the operating system.

A programmer is writing a program that outputs a string, first in its original order and then in
reverse order.

The program will use locations starting at address NAME to store the characters in the string. The
location with address MAX stores the number of characters that make up the string.

The programmer has started to write the program in the table opposite. The Comment column
contains descriptions for the missing program instructions.

Complete the program using op codes from the given instruction set.

© UCLES 2016

9608/43/0/N/16

15

Label

code Operand

Comment

START :

//

initialise index register to zero

//

initialise COUNT to zero

LOOP1:

//

load character from indexed address NAME

//

output character to screen

//

increment index register

//

increment COUNT starts here

//

is COUNT = MAX ?

//

if FALSE, Jjump to LOOP1

REVERSE:

//

decrement index register

//

set ACC to zero

//

store in COUNT

LOOP2:

//

load character from indexed address NAME

//

output character to screen

//

decrement index register

//

increment COUNT starts here

//

is COUNT = MAX ?

//

if FALSE, Jjump to LOOP2

//

end of program

COUNT:

4

NAME :

B0O1000110

//

ASCII code in binary for 'F'

B01010010

//

ASCII code in binary for 'R’

B01000101

//

ASCII code in binary for 'E'

B01000100

//

ASCII code in binary for 'D'

© UCLES 2016

[13]
9608/43/0/N/16 [Turn over

16
4 Commercial software usually undergoes acceptance testing and integration testing.
Distinguish between the two types of testing by stating:

* who does the testing
* when the testing occurs
* the specific purpose of each type of testing

(i) Acceptance testing

(if) Integration testing

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9608/43/0/N/16

