S T o b vVPvSsS e T v =

oETnloielely Cambridge International Examinations

DIGGENGUEN Cambridge International Advanced Subsidiary and Advanced Level
AS & A Level

CANDIDATE

NAME

CENTRE CANDIDATE

NUMBER NUMBER

COMPUTER SCIENCE 9608/41

Paper 4 Further Problem-solving and Programming Skills October/November 2017
2 hours

Candidates answer on the Question Paper.
No Additional Materials are required.
No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.
No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 16 printed pages.

CAMBRIDGE

International Examinations

DC (NHAJG) 129977/4
© UCLES 2017

[Turn over

2

1 A greenhouse has a window that automatically opens and closes depending on the internal
temperature.

If the temperature rises above 20 °C, the window half opens. If the temperature rises above 30°C,
the window fully opens. If the temperature drops below 25°C, the window returns to being half
open. If the temperature drops below 15°C, the window fully closes.

The window has three possible states: Closed, Half Open and Fully Open.

Current state Event Next state
Closed Temperature rises above 20°C | Half Open
Half Open Temperature drops below 15°C | Closed
Half Open Temperature rises above 30°C | Fully Open
Fully Open Temperature drops below 25°C | Half Open

Complete the state-transition diagram for the window:

[7]

© UCLES 2017 9608/41/0/N/17

3

2 (a) (i) State how repetition is shown in a Jackson Structured Programming (JSP) structure
diagram.

(b) A simple calculator is to be created.
The calculator is to be used as follows:

User inputs 2 numbers (x and y).

User inputs an operator (+, -, * or /).
The calculator computes the answer.

The calculator displays the answer.

Draw a JSP diagram for the calculator. The first element is provided.

Calculator

(3]

© UCLES 2017 9608/41/0/N/17 [Turn over

4
3 Adeclarative programming language is used to represent the following knowledge base:

01 person(jane).

02 person (ahmed) .

03 person(caroline).

04 person(stuart).

05 food(chocolate).

06 food(sushi).

07 food(pizza).

08 food(chilli).

09 1likes(jane, pizza).

10 likes (ahmed, chocolate).
11 1likes (ahmed, pizza).

12 likes(jane, chilli).

13 likes(stuart, sushi).

14 dislikes (stuart, chocolate).
15 dislikes(jane, sushi).

16 dislikes (caroline, pizza).

These clauses have the following meanings:

Clause Explanation
01 Jane is a person
05 Chocolate is a food
09 Jane likes pizza
14 Stuart dislikes (does not like) chocolate

(a) Mimiis a person who likes chocolate but does not like sushi or lettuce.

Write additional clauses to represent this information.

© UCLES 2017 9608/41/0/N/17

5
(b) Using the variable PersonName, the goal:
likes (PersonName, pizza).
returns:
PersonName = jane, ahmed.
Write the result that is returned by the goal:

likes (ahmed, FoodItem).

FOOATEEIM = utteiuiesueeeseeeaueeesueeaseeesseesaeeesseeaseeaseesmseeaaeeamseesseeamseeaseeanseesmeeanseeaneeenseesnseenseesnseenseens

... [2]
(c) B might like A, if B is a person, Ais a food and B does not dislike A.

Write this as a rule.

MIGRE 1IKE (rrrrrerrrrerienrenresieeeeee e) eeneeeenee e —e et aaeeaneeeaeeaneeenreeas)

RIS

... (6]

© UCLES 2017 9608/41/0/N/17 [Turn over

4 The following table shows part of the instruction set for a processor. The processor has one

6

general purpose register, the Accumulator (ACC), and an Index Register (1X).

Instruction
Explanation
Op code Operand

LDM #n Immediate addressing. Load the number n to ACC.

LDD <address> Direct addressing. Load the contents of the location at the given
address to ACC.

LDI <address> Indirect addressing. The address to be used is at the given
address. Load the contents of this second address to ACC.

LDX <address> Indexed addressing. Form the address from <address> + the
contents of the index register. Copy the contents of this
calculated address to ACC.

LDR #n Immediate addressing. Load the number n to IX.

STO <address> | Store the contents of ACC at the given address.

STX <address> Indexed addressing. Form the address from <address> + the
contents of the index register. Copy the contents from ACC to
this calculated address.

ADD <address> | Add the contents of the given address to the ACC.

INC <register> | Add 1 to the contents of the register (ACC or IX).

DEC <register> | Subtract 1 from the contents of the register (ACC or IX).

JMP <address> | Jump to the given address.

CMP <address> | Compare the contents of ACC with the contents of <address>.

CMP #n Compare the contents of ACC with number n.

JPE <address> Following a compare instruction, jump to <address> if the
compare was True.

JPN <address> Following a compare instruction, jump to <address> if the
compare was False.

LSL #n Bits in ACC are shifted n places to the left. Zeros are introduced
on the right hand end.

LSR #n Bits in ACC are shifted n places to the right. Zeros are introduced
on the left hand end.

IN Key in a character and store its ASCII value in ACC.

OUT Output to the screen the character whose ASCII value is stored
in ACC.

END Return control to the operating system.

© UCLES 2017

9608/41/0/N/17

7

(a) A program stores a letter. The user is allowed nine attempts to guess the stored letter. The
program outputs “?” and the user guesses a letter. If the user guesses the letter, the program
outputs “*”.

The following is pseudocode for this program.

REPEAT
ouTpUT '?2!
INPUT GUESS
IF GUESS = LETTERTOGUESS

THEN
OoUTPUT '*'
BREAK
ELSE
ATTEMPTS <«— ATTEMPTS + 1
ENDIF

UNTIL ATTEMPTS = 9

Write this program. Use the op codes from the instruction set provided.

Label Op code Operand Comment

START : 1LDM #63 // load ASCII value for '?'

// OUTPUT '?'

// input GUESS

// compare with stored letter

// 1f correct guess, go to GUESSED

// increment ATTEMPTS

// is ATTEMPTS = 9 ?

// 1if out of guesses, go to ENDP

// go back to beginning of loop

GUESSED: LDM #42 // load ASCII for '*'

// OUTPUT '*'

ENDP: END // end program
ATTEMPTS: 0
LETTERTOGUESS : 'a'

[11]

© UCLES 2017 9608/41/0/N/17 [Turn over

8

(b) Five numbers are stored, starting in the location labelled NUMBERS. A program is needed to
multiply each of the numbers by 4 and store them back in their original location.

Write this program. Use the op codes from the instruction set on the opposite page.

Label Op code | Operand Comment
START: // initialise the Index Register
// load the value from NUMBERS
// multiply by 4
// store the new value in NUMBERS
// increment the Index Register
// increment COUNT
// is COUNT = 5 ?
// repeat for next number
ENDP: END
COUNT: 0
NUMBERS: 22
13
5
46
12

© UCLES 2017

9608/41/0/N/17

[10]

Instruction
Explanation
Op code Operand

LDM #n Immediate addressing. Load the number n to ACC.

LDD <address> Direct addressing. Load the contents of the location at the given
address to ACC.

LDI <address> Indirect addressing. The address to be used is at the given
address. Load the contents of this second address to ACC.

LDX <address> | Indexed addressing. Form the address from <address> + the
contents of the index register. Copy the contents of this
calculated address to ACC.

LDR #n Immediate addressing. Load the number n to IX.

STO <address> | Store the contents of ACC at the given address.

STX <address> | Indexed addressing. Form the address from <address> + the
contents of the index register. Copy the contents from ACC to
this calculated address.

ADD <address> | Add the contents of the given address to the ACC.

INC <register> | Add 1 to the contents of the register (ACC or IX).

DEC <register> | Subtract 1 from the contents of the register (ACC or IX).

JMP <address> | Jump to the given address.

CMP <address> | Compare the contents of ACC with the contents of <address>.

CMP #n Compare the contents of ACC with number n.

JPE <address> Following a compare instruction, jump to <address> if the
compare was True.

JPN <address> Following a compare instruction, jump to <address> if the
compare was False.

LSL #n Bits in ACC are shifted n places to the left. Zeros are introduced
on the right hand end.

LSR #n Bits in ACC are shifted n places to the right. Zeros are introduced
on the left hand end.

IN Key in a character and store its ASCII value in ACC.

ouT Output to the screen the character whose ASCII value is stored
in ACC.

END Return control to the operating system.

© UCLES 2017 9608/41/0/N/17 [Turn over

5

10
Large development projects require careful resource management.

(@) (i) Name an appropriate project management tool that helps the manager to work out the
estimated length of time it takes for the project to complete.

(ii) Explain how, during the planning stage of the project, the manager would use the tool
you named in part (a)(i).

(b) (i) Different programmers have been writing independent modules. The modules now need
to be combined to create the final system.

Name the type of testing required at this stage.

(ii) Name the final testing stage required before the system becomes operational.

© UCLES 2017 9608/41/0/N/17

11

6 A programmer wants to create a computer simulation of animals searching for food in a desert.
The desert is represented by a 40 by 40 grid. Each position in the grid is represented by a pair of
coordinates. 'A' represents an animal and 'F' represents food. At the start of the simulation, the
grid contains 5 animals and 1 food source.

The following is an example of part of the grid.

o 1 2 3 4 .. 37 38 39
0
1 F
2 A
3 A
38 A .| A
39

A timer is used. In each time interval, each animal randomly moves 0 or 1 position in a random
direction. The program generates this movement by computing two random numbers, each of
which can be —1, 0 or 1. The program adds the first random number to the across number and the
second random number to the down number representing the animal’s position.

For example:

e if 0 and 1 are generated, the across value does not change, the down value increases by 1

e if =1 and 1 are generated, the across value decreases by 1, and the down value increases
by 1.

Each animal has an individual score. If the animal moves to a position in the grid with food ('F'):

the animal’s score increases by 1

the food disappears

one new animal ('A") is randomly generated and added to the grid (to a maximum of
20 animals)

e one new food ('F ') is randomly generated and added to the grid.

The simulation is to be implemented using object-oriented programming.
The programmer has designed two classes, Desert and Animal.
The Desert class consists of:

e attributes
o Grid
o StepCounter
o AnimalList
o NumberOfAnimals
e methods
@) Constructor
o IncrementStepCounter
l¢) GenerateFood
o DisplayGrid

Each attribute consists of a value and a get and set method that allow access to the attributes.
© UCLES 2017 9608/41/0/N/17 [Turn over

12

The following table describes the attributes and methods for the Animal class.

Identifier

Data type

Description

Constructor ()

Instantiate an object of the Animal
class

Generate a pair of random numbers
between 0 and 39.

Place animal at that random
position.

Initialise the animal’s score to 0.

EatFood ()

Delete the food.

Increase the score of the animal that
called the method.

Call the GenerateFood method of
the Desert class.

Call the Constructor method of
the Animal class.

Move ()

Call the
GenerateChangeInCoordinate
method for each coordinate (across
or down number) of the animal’s
position.

Moves the animal to the new space.
If there is food in the new position,
call the EatFood method.

Score

INTEGER

Initialised to O

Across

INTEGER

The across value, between 0 and 39

Down

INTEGER

The down value, between 0 and 39

© UCLES 2017

9608/41/0/N/17

13
(a) Write program code to declare the attributes and constructor for the Animal class.
You only need to write the set and get methods for the attribute Across.
You should also write:

e the constructor for the class
e set and get methods for the Across attribute only.

Programming [aNQUAGEcooiiiiiiiiiieee e a e
Program code

© UCLES 2017 9608/41/0/N/17 [Turn over

14
(b) The Constructor method of the Desert class:
e initialises an empty grid
e creates 5 animal objects which are added to the AnimalList (an array of animal objects
currently on the grid)
e generates one food
e setsthe StepCounter to 0.
Write program code for the Constructor method.

Programming [ANQUAGEeeiiiiiiiiiiiiiiie e

Program code

© UCLES 2017 9608/41/0/N/17

15
(c) (i) The function GenerateChangeInCoordinate:
e receives a coordinate (across or down number) as a parameter
e checks whether the coordinate’s value is at a boundary of the grid
e returns a random change (-1, 0 or 1) that will keep the animal’s position within the
grid.
Write program code for the GenerateChangeInCoordinate function.

Programming laNQUAGEcouuuiiiiiiie et

Program code

© UCLES 2017 9608/41/0/N/17 [Turn over

16
(ii) The Move method uses the GenerateChangeInCoordinate function to calculate the
new Across and Down values for an animal. If there is food in the new position in the
grid, the animal eats the food.
Write program code for the Move method.

Programming [aNQUAGEccuumiiiiiiii e

Program code

(d) The programmer plans to add a graphic display to the program. The programmer will make
use of a program library.

Explain what is meant by a program library.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International

Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 9608/41/0/N/17

