Cambridge
International
AS \& A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE

9608/01
Paper 1 Theory Fundamentals
SPECIMEN MARK SCHEME
1 hour 30 minutes

MAXIMUM MARK: 75

1 (a) (i) The table/each student has a repeated group of attributes. // Each student has a number of subjects.
(ii) StudentName, TutorGroup and Tutor would need to be repeated for each record.
(b)

Table: Student

StudentName	TutorGroup	Tutor
Tom	6	SAN
Joe	7	MEB
Samir	6	SAN

Table: StudentSubjectChoices

Student Name	Subject	Level	Subject Teacher
Tom	Physics	A	SAN
Tom	Chemistry	A	MEB
Tom	General Studies	AS	DIL
Joe	Geography	AS	ROG
Joe	French	AS	HEN
Samir	Computer Science	A	VAR
Samir	Chemistry	A	MEB
Samir	Maths	A	COR
Samir	General Studies	A	DIL

Mark as follows:
complete Student table
repetition of StudentName in StudentSubjectChoices table
complete columns 2, 3, and 4
(c) (i) primary key...

- an attribute/combination of attributes
- chosen to ensure that the records in a table are unique // used to identify a record/tuple
(ii) StudentName + Subject (This is the only correct answer.)
(iii) - There is a one-to-many relationship. // Student is the 'one side' table StudentSubjectChoices is the 'many side' table.
- the primary key (attribute StudentName) in Student
- links to StudentName in the StudentSubjectChoices table
- (StudentName in the) StudentSubjectChoices table is the foreign key. // StudentName is the foreign key that links the two tables.
[max 2]
(d) - there are non-key attributes ...
- SubjectTeacher ...
- dependent only on part of the primary key (i.e. Subject) // partial dependency
(e) - there are dependent non-key attributes // there are non-key dependencies
- TutorGroup is dependent on Tutor // Tutor is dependent on TutorGroup
[Total: 14]

2 (a) - type of parity (odd or even) is agreed by both devices concerned with the communication

- transmitting device counts number of 1 bits in the byte
- one bit is reserved for parity bit
- this parity bit is set to 1 or 0 in order to make the number of 1 s in the byte an odd or even number dependent on what type of parity is used
- receiving device on receipt of byte counts number of 1 s
- ...odd number of 1 s in even parity gives an error leven number of 1 s in odd parity gives error
(1 mark per -, max 3)
(b) - odd parity is used
- byte number 5 has an even number of 1 s therefore an error
- column 4 has an even number of 1 s
- therefore the 0 in row 5 , column 4 needs to be changed to 1
(1 mark per -, max 3)

3 (a)

LDD 105

Accumulator
00010001

	Main memory
100	01000000
101	01101011
102	11111110
103	11111010
104	01011101
105	00010001
106	10101000
107	11000001
1	1
200	10011111

Mark as follows:

- sensible annotation which makes clear 105 is the address used
- final value in Accumulator
(b)

LDX 101

Accumulator
01011101

Index Register
00000011

	Main memory
100	01000000
101	01101011
102	11111110
103	11111010
104	01011101
105	00010001
106	10101000
107	11000001
1	γ
200	10011111

Mark as follows:

- IR contents converted to 3
- computed address of $101+3=104$
// explanation: add contents of IR to address part of instruction
- then, 'direct addressing' to 104
- final value in Accumulator
(c)

Memory Address			
507	508	509	510
22	170	0	0
		23	
			171

Mark as follows:

- 22 to Accumulator
- incremented to 23
- 23 copied to address 509
- 170 copied to Accumulator and incremented to 171
- $\quad 171$ in address 510
[Total: 11]

4 (a) lines 10-35
(b) (i) myWeight - myHeight - myBMI case must be correct - any 2 of 3
(ii) Line Number 21-33
(c) (i) prompts the user for input
assigns the input to the given variable
(ii) displays the text shown
in a dialogue box with the alert symbol
(d) router
(e) $\mathrm{F}-\mathrm{G}-\mathrm{B}-\mathrm{A}-\mathrm{C}$
(f) The browser will have an interpreter to execute the JavaScript code.
(g) The browser loads the page from the local hard drive.

5 (a) (i) 10010110
(ii) 9 C
(b) height: 205 pixels
width: 156 pixels
(c) (i) 1 bit
(ii) Each colour is represented by a number.

1 byte makes possible 256 different numbers/colours.
(iii) the header
the resolution
(iv) A bitmap may contain the same sequence of pixels (i.e. a pattern) repeated many times / may contain the same pixel in a long sequence.

A lossless technique is designed to lose none of the original detail. / Lossless allows the original file to be re-created exactly. / Lossy may result in a loss of detail.

One lossless technique is 'run-length encoding/store the colour and the number of consecutive pixels of that colour'. JPEG and GIF file formats use RLE (i.e. a lossless technique).

Lossless techniques are founded on some form of replacement.
Lossy techniques make a decision about what parts of the image are important and then discard certain information.
[Total: 13]

6 (a) product - 3
management - 1
self - 2
3 correct $=2$ marks
1 correct - 1 mark
(b) (i) Management at fault need to keep whole project staff fully informed - i.e. a MANAGEMENT issue

This could impact on the whole project - i.e. a PRODUCT issue.
JUDGEMENT of the project leader is poor.
(ii) A SELF issue - staff should be expected to keep their skills up to date.

It could be the EMPLOYER is not able to move quickly into new areas of work.
(iii) This is a PUBLIC interest issue.

The employee has used good JUDGEMENT in bringing the issue into open discussion.
[Total: 9]

7 (a)

A	B	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(1 mark for C column and 4 marks for S column)
(b) It adds together two single bits/a half adder.

BLANK PAGE

