MARK SCHEME for the October／November 2015 series

9608 COMPUTER SCIENCE

9608／21 Paper 2 （Written Paper），maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

1 (i) 40
(ii) $314.2(0)$
(iii) $16 / /$ ERROR as identifier Z has not been declared
(iv) TRUE

2 (i) (Single) software program
Features for:
program editor/writing/editing translation // interpreter/compiler
testing program code /I observe outputs $\int 2$ points to score
(ii) Syntax checking (on entry)

Structure blocks (e.g. IF structure and loops begin/end highlighted)
General prettyprint features
Automatic indentation
Highlights any undeclared variables
Highlights any unassigned variables
Commenting out/in of blocks of code
Visual collapsing / highlighting of blocks of code
Single stepping
Breakpoints
Variable/expressions report window
[MAX 3]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

3 (a)

	Inputs		Output
Test Case	InA	InB	OutZ
1	TRUE	TRUE	FALSE
2	TRUE	FALSE	TRUE
3	FALSE	TRUE	TRUE
4	FALSE	FALSE	TRUE

(b) If InA $=$ TRUE AND $\operatorname{InB}=$ TRUE

THEN
Outz \leftarrow FALSE
ELSE
Outz \leftarrow TRUE
ENDIF

Mark as follows
Structure: IF - THEN - ELSE - ENDIF
Condition: InA $=$ TRUE AND InB $=$ TRUE
Logic: $\left.\quad \begin{array}{ll}\text { Outz } \leftarrow \operatorname{FALSE} \text { (when condition true) } \\ & \text { Outz } \leftarrow \operatorname{TRUE} \text { (when condition false) }\end{array}\right\}$

Alternative answer (worth 3 marks):
OutZ \leftarrow NOT (InA AND InB)
Outz \leftarrow NOT InA OR NOT InB

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

4

[MAX 6]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

5 (a)

Identifier	Data type	Description
YearCount	INTEGER	Loop counter /// Age of the car
PurchasePrice	INTEGER	Purchase price of the car
CurrentValue	REAL // CURRENCY Allow: SINGLE Refuse: DOUBLE	The changing depreciated value

Must have correct identifier + Data type + Description to score
(b) OUTPUT "Enter Purchase price"

INPUT PurchasePrice
CurrentValue \leftarrow PurchasePrice
YearCount $\leftarrow 1$
WHILE YearCount < 9 AND CurrentValue >= 1000
Note: Penalise: inclusion of \$
IF YearCount = 1
THEN
CurrentValue \leftarrow CurrentValue * (1 - 40/100)
ELSE
CurrentValue \leftarrow CurrentValue * 0.8
ENDIF
OUTPUT YearCount, CurrentValue
YearCount \leftarrow YearCount +1
ENDWHILE

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

6 (a) Combination of staff and task number // the pair of numbers // the pair of random numbers [1] //there will be duplicates/repeats//some staff tasks will not be generated
(b) (i) $04 / / 03$
(ii) $27 / / 28$
(iii) 20
(iv) $11 / 12$
(c) (i) Zero
(ii) Completed <> 60 // NewStaffTask = FALSE

Allow: Inclusion of the WHILE
(iii) Determines whether this combination of StaffNum and TaskNum has been completed
Assigns value TRUE if not already generated
Flags that this is the first time this staff + task has been selected/to exit the loop
Outputs the new staff + task number
(iv) $\frac{\text { TaskGrid : ARRAY }[1: 5,1: 12] \text { OF BOOLEAN }}{1 \text { mark }}$
(d) Pseudocode ...

Visual Basic
Select Case StaffNo
Case 1
StaffName = "Sadiq"
Case 2
StaffName = "Smith"
Case 3
StaffName = "Ho"
Case 4
Staffname = "Azmah"
Case 5
StaffName = "Papadopolis"
End Select

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

7 (a) (i) CAT
Ignore any opening + closing quotes
(ii) 13
(iii) 83
(iv) 15
(b) Input of string ...
$\left.\begin{array}{l}\text { Correct syntax (for both prompt and assignment) } \\ \text { Uses MyString identifier }\end{array}\right\}$
StringTotal set to 0
FOR loop:
FOR - NEXT keywords // (Python) correct indentation
Correct start and /end boundaries
Note: the end boundary must use the language length function/method // alternative Python syntax

Isolate single character number
$\left.\begin{array}{l}\text { Followed by the use of Asc (VB) // Ord (Python) } \\ \text { Assigned to NextNum }\end{array}\right\}$
Added to StringTotal
Correct syntax for the output of the string and number

Python ...

```
MyString = input('key in string')
```

StringTotal $=0$
for i in range (0, len(MyString)):
NextNum = ord (MyString[i])
StringTotal = StringTotal + NextNum
print (MyString, StringTotal)

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

Visual Basic...

```
Dim MyString As String
Dim StringTotal As Integer
Dim i As Integer
Dim NextNum As Integer
Console.Write("key in string")
MyString = Console.ReadLine
StringTotal = 0
For i = 1 To Len(MyString) // MyString.Length
    NextNum = Asc(Mid(MyString, i, 1))
    StringTotal = StringTotal + NextNum
Next
Console.WriteLine(MyString & " " & Str(StringTotal))
```


Pascal ...

```
VAR MyString : String ;
```

VAR StringTotal : Integer ;
VAR i : Integer ;
VAR NextNum : Integer ;
VAR SingleChar : Char;
begin
Writeln('key in string');
readln(MyString) ;
StringTotal := 0 ;
For i := 1 To Length(MyString) do
begin
SingleChar := MyString[i] ;
NextNum := Ord(SingleChar) ;
StringTotal := StringTotal + NextNum ;
end ;
WriteLn (MyString, StringTotal) ;
ReadLn() ;
End.
(c) Used to provide an integrity/verification check

Used as a checksum
The total can be recalculated by the receiving software
If any of the characters have been incorrectly transmitted the recalculated total and transmitted total will not match

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

8 (a) r
Ignore inclusion of any quotes
(b) (i) 2

Ignore inclusion of any quotes for part (i), (ii) and (iii)
(ii) +
(iii) 7
(c) (i)

N1	N2	N3	N4	BottomAnswer	Op	TopAnswer	OUTPUT
2	5	3	8		40	-	1
							$1 / 40$

(ii)

N1	N2	N3	N4	BottomAnswer	Op	TopAnswer	OUTPUT
3	4	1	4	16	+	16	1

(iii)

N1	N2	N3	N4	BottomAnswer	Op	TopAnswer	OUTPUT
7	9	2	3	27	+	39	
						12	
							$1212 / 27$

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9608	21

(d) (i) Adaptive (maintenance)
(ii) Allow more than two fractions to be added

Numerator/denominator more than 1 digit [1]
Multiply and division also possible [1]
Allow brackets
Give answer as decimal number
Lowest possible denominator
Trap any fraction which has a zero numerator
Allow the input of vulgar fraction(s)

