MARK SCHEME for the October／November 2015 series

9608 COMPUTER SCIENCE

9608／32
Paper 3 （Written Paper），maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9608	32

1 (a) (i) 011010000011
$=\underline{0.1101}($ or $\underline{1 / 2+1 / 4+1 / 16}) \times 2 \uparrow \underline{3}$
= 110.1
$=6.5$
(ii) +3.5
= 11.1
$=0.111 \times 2 \uparrow 2$ (or indication of moving binary point correctly)
$=011100000010$
(iii) 01110000 Allow f.t. from (ii)

10001111 One's complement on mantissa
10001111 +1 Two's complement
$=100100000010$
(b) (i) Precision/accuracy of numbers represented will increase
(ii) Range of numbers represented will increase
(c) Any point, 1 mark (max. 3)
$0.1 / 0.2$ cannot be represented exactly in binary // rounding error
0.1 represented by a value just greater than $0.1 / / 0.2$ represented by a value just greater than 0.2
adding two representations together adds the two differences
summed difference significant enough to be seen

2 (a)

Symbol	Token	
	Value	Type
Start	60	Variable
0.1	61	Constant
Counter	62	Variable
10	63	Constant

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9608	32

(b)

(c) (i) syntax analysis
(ii) any two points from:
construct parse tree // parsing
checking syntax/grammar
produce error report
[max. 2]
(d) (i) Minimise the execution time // code runs faster
(ii) Compiler could calculate $2 * 6$ and replace it with the value 12.
(iii) LDD 436

ADD 437
STO 612
ADD 438
STO 613
-1 for each additional instruction; 0 for copy of original code

3 (a) dedicated circuit/channel/physical path
which lasts for duration of connection
(b) e.g.
cs: gives dedicated circuit
ps: split into packets/chunks
ps: sends packets on individual routes
cs: whole bandwidth available // ps: shares bandwidth
cs: faster data transfer
cs: packets arrive in order they are sent
cs: packets cannot get lost
cs: better for a real-time application
ps: packets may arrive out of order so delay until packet order restored
ps: packets may get lost so retransmission causes delays
(c) web page divided into packets/chunks
each packet has destination address
router looks at IP address...
and decides where to send packet next for most efficient path
packets can take different routes
home computer reassembles packets to rebuild web page

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9608	32

[Total: 11]
4 (a) 1 mark for correct arrow from each description

(b) (i) Massive: many/large number of processors // hundreds/thousands of processors
(ii) Parallel: to perform a set of coordinated computations in parallel/simultaneously
(c) processors need to be able to communicate ... so that processed data can be transferred from one processor to another
suitable algorithm/program/software/design // appropriate programming language
which allows data to be processed by multiple processors simultaneously
[Total: 10]

Page 5 Mark Scheme

5 (a) (i)

$$
\begin{equation*}
Z=P \cdot \bar{Q} \cdot \bar{R}+\frac{}{P \cdot \bar{Q} \cdot R+}+ \tag{1}
\end{equation*}
$$

(ii)

		PQ			
	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	
\mathbf{R}	0	0	0	1	
$\mathbf{1}$	0	0	1	1	

(iii) 1 mark each loop

Allow f.t. from (ii)
(iv)

$$
\begin{align*}
& \text { Z= } \\
& \text { P. } \bar{Q} \tag{1}\\
& +P . R
\end{align*}
$$

Allow f.t. from (iii)
(b) (i) 1 mark row headings. 1 mark column headings.

1 mark per 2 correct rows (based on headings)

RS | | | PQ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ | | |
| $\mathbf{0 0}$ | 0 | 0 | 0 | 0 | | |
| $\mathbf{0 1}$ | 0 | 1 | 1 | 1 | | |
| $\mathbf{1 1}$ | 0 | 1 | 1 | 0 | | |
| $\mathbf{1 0}$ | 0 | 0 | 0 | 0 | | |

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9608	32

(ii) 1 mark for loop with two $1 \mathrm{~s} ; 1$ mark for loop with four 1 s

		PQ			
	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	
$\mathbf{0 0}$	0	0	0	0	
$\mathbf{0 1}$	0	1	1	1	
$\mathbf{1 1}$	0	1	1	0	
$\mathbf{1 0}$	0	0	0	0	

Allow f.t. from (i
-1 for each incorrect grouping, max. 2 errors
(iii)

$$
Z=
$$

Q.S
$+P . R . \bar{S}$
Allow f.t. from (ii). -1 error if more than 2 terms
[Total: 16]

6 (a) blocked \rightarrow ready:
process is waiting for resource/I/O operation to complete (blocked state)
when I/O operation completed process goes into ready queue (ready state)
running \rightarrow ready:
when process is executing it is allocated a time slice (running state) // process is allocated time on processor
when time slice completed/interrupt occurs process can no longer use processor even
though it is capable of further processing (ready state)
(b) to be in blocked state process must initiate some I/O operation
to initiate operation process must be executing
if process in ready state cannot be executing/must be in running state
(c) (i) exit/termination/completion
(ii) when the process has finished execution
(d) low-level scheduler:
decides which of the processes in ready state
should get use of processor/be put in running state
based on position/priority
invoked after interrupt/OS call

