MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0420 COMPUTER STUDIES

0420/12
Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 Any three from:

- fact finding
- feasibility study
- analysis
- design
- testing
- documentation/technical documentation/user guide
- implementation/installation
- evaluation
- maintenance

2 email
advantages (one from:)

- easier to send attachments
- easier/faster to type
- can format text
- cheaper to send an email

disadvantage (one from:)

- need to buy computer equipment
- computer equipment not as portable as mobile phone
- need a broadband connection/modem/Internet access
- need account for emails
- can send a virus

mobile phones

advantages (one from:)

- completely portable method/can be used on the move
- more people have mobile phones
- use of predictive texting
- cheaper to buy a phone
disadvantage (one from:)
- can't send large documents/files/limited number of characters
- phone charges for sending messages are relatively high
- phone charges for sending messages overseas are high
- slow to key in messages/small keyboard
- often out of range of signal/poor signal
- smaller screens

3 Any five from:

- viruses
- hacking
- cookies
- pharming
- phishing
- spyware
- tapping into unsecured wifi network/war driving
- shoulder surfing/over-the-shoulder observation of the Internet user's credentials/user name and password

Page 3	Mark Scheme: Teachers' version	Syllabus
IGCSE - MaylJune 2012	0420	

4 (a)

(b) 3D printer

- capable of producing solid objects
- cheaper than making a working model (by conventional methods)
- works with CAD

dot matrix printer

- can work in harsh environments
- (since in a factory,) noise levels are not important
- quality of printout not important
- robust printer

colour inkjet printer

- suited to low volume
- good/photographic quality printing
colour laser printer
- fast for volume printing

5 (a) Any three from:

- wire frame
- 2D / 3D modelling
- library of parts which can be used in new drawings
- validation / verification of designs against original specification
- ability to link with computer-aided manufacture (CAM)
- facility to calculate the mass of the actual object once built
- facility to calculate the cost of producing the article
- features such as rotation, colour, zoom, etc.
- simulation of designs (without the need to build a prototype)
- create engineering drawings from solid models
- import and export to allow the exchange of data with other software packages
- kinematics (i.e. check moving parts in assemblies don't interfere with each other)
- automatic routing of cables and hoses
(b) Any three from:
- (very) large screens/monitors
- plotters to draw scale and full size drawings
- 3D printers
- CAM machinery/CNC lathe
(c) Any two health risks and any one safety risk from:
health risks
- RSI from repeated/long continuous use of a keyboard/repeated clicking on a mouse
- back/neck ache from bad posture/incorrect chair position
- headaches caused by glare from monitors
- eye strain caused by glare from monitors/poor lighting
- dry eye caused by staring at screen without blinking
- respiratory problems etc. caused by ozone/toner particulates emitted from a laser printer

safety risks

- electrocution e.g. bare wires, drinks near computers, etc.
- trip hazards from trailing cables
- heavy equipment falling due to failure of inadequate desks, work stations etc.
- fires from short circuits/over-heating equipment

Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE - May/June 2012	0420

6 (a)

\mathbf{M} \mathbf{T} \mathbf{S} \mathbf{C} \mathbf{D} 32 1 0 1 1 16 32 32 2 8 0 32 3 0 4 8 40 4 1 2 4 44 5 1 1 0 44 6 0 1 45 7 1 (1 mark) (1 mark) (1 mark) $(1$ mark)

(b) converting binary number into equivalent base 10 number
(c) 60

7 (a) (i) Any one from:

- sound card and/or speakers
- possibly F1 key is faulty
(ii) Any two from:
- ask a further series of questions
- based on responses of the user
- reference to knowledge base/rules base/explanation system/inference engine
(iii) Any one from:
- \% probability of identified fault found
- advice on how to correct fault
- change the speakers/sound card/keypad
(b) Any three from:
- knowledge base
- rules base
- inference engine
- expert system shell
- explanation system
(c) RAM
- to store data/programs/parts of operating system in use
- to store data that can be changed

ROM

- where operating system/bios is stored
- where data that starts up the system is stored

8 (a) -1 mark for each different error

	D		
1	bmi		
2	= $\mathrm{B} 2 /(\mathrm{C} 2 * \mathrm{C} 2)$	OR	= B2/C2^2
3	= B3/(C3* ${ }^{*} 3$)	OR	= B3/C3^2
4	= B4/(C4* ${ }^{*} 4$)		= B4/C4^2
5	= B5/(C5* ${ }^{\text {C }} 5$)	OR	= B5/C5^2
6	= B6/(C6*C6)	OR	= B6/C6^2
7	= $\mathrm{B7} /\left(\mathrm{C} 7 *{ }^{*} 7\right)$		= B7/C7^2

(b) (i) normal (correct spelling only)
(ii) = SUM(D2:D7)/6 or
= AVERAGE(D2:D7) or
= (D2 + D3 + D4 + D5 + D6 + D7)/6
(iii) = IF(D8 < 18.5, "underweight", IF(D8 > 25, "overweight", "normal"))
<-------1 mark -------> <--------- 1 mark --------->
(c) $=20 * \mathrm{C} 2 * \mathrm{C} 2$

OR
$=20^{*} \mathrm{C} 2^{\wedge} 2$

9 (a) barcode reader
e.g. (any reasonable application these are just examples)

- stock control
- library loans
- Point Of Sale system
- tracking systems
- itemised billing

RFID

e.g. (any reasonable application these are just examples)

- identifying/tracking individual items e.g. livestock, vehicles

magnetic stripe

e.g. (any reasonable application these are just examples)
_ security cards (e.g. hotel room keys)

- credit/debit/smart cards/ATMs/banking
- loyalty cards
(b) 1 mark for naming validation check +1 mark for example of its use (the two must match up)
length check - check if an id number is exactly 8 characters long
range check - check if a person's age is in the range 11 to 19
limit check
- check if salary paid greater than 0
character/type - check if a telephone number contains digits only
consistency check - return flight date after outbound flight date
format check - check if a date is in the form dd $/ \mathrm{mm} /$ yyyy
presence check - filling out a form online where a given field MUST have data entered
check digit - ISBN of a book

10 (a)

A	B	C	X	(1 mark)
0	0	0	1	
0	0	1	1	
0	1	0	0	(1 mark)
0	1	1	1	
1	0	0	0	(1 mark)
1	0	1	0	
1	1	0	0	(1 mark)
1	1	1	1	

(b) 1 mark for correct logic gate +1 mark for correct associated truth table.

Any two from:

- NOR, AND, OR, XOR (EOR)

A	B	NOR	AND	OR	XOR
0	0	1	0	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	0	1	1	0

11 (a) (i) Any points from (maximum of 3 marks):

- signals/data supplied by sensors to the computer
- use of ADC
- computer compares data with pre-stored values
- if data beyond/greater than stored limit, intruder has been detected
- monitoring continues until re-set
(ii) Any points from (maximum of 2 marks):
- computer sends signal ...
- ... to set off siren/buzzer/light/alarm bell/sounds alarm
- use of a DAC
- automatically informs police/security company
(b) Any two points from:
- signal sent to ...
- ... motors
- ... actuators
(c) Any one point from:
- motion
- light
- sound
- temperature
(d) Any two points from:
- store realistic values in memory/adjust sensitivity
- use 2 different sensors to monitor the same parameter (e.g. sound sensor and infra-red sensor to monitor intruder)
- fully/regularly test system once installed
- increase fault tolerance by use of redundant sensors and computers

12 (a) (i) 3 minutes $=180$ seconds
each song $=180 * 128=23040$ kbits
number of bytes $=23040 / 8=2880$ kbyte
$=2.8(125)$ Mbyte
(ii) 4 Gbyte $=4$ * 1024 = 4096 Mbyte
therefore, number of songs $=4$ 096/2.8125 $=1456$ songs
(b) Any three points from:

- uses hard disk/disk pack (2 to 5 disks)
- each disk surface has a R/W head
- use of read and write buffers
- R/W operation is faster than general data transfer rate ...
- ... therefore simultaneous read/write operations can occur
- description of how a DVD-RAM works
- concentric tracks allow R/W at the same time
- fast R/W operation

13 (a) code B
(b) Any one from:

- no need to understand workings of a computer
- easier to understand for programmer/closer to English
- much easier to debug
- much easier to test
- one to many when writing commands
- not machine specific/portable
(c) Any one from:
- can address memory addresses directly
- no need for compilers/interpreters
- shorter code/code requires less storage/RAM
- can (be written to) run faster
(d) - compiler produces object code / interpreter doesn't produce object code
- compiler translates whole program in one go / interpreter translates and executes line at a time
- compiler produces list of all errors / interpreter produces error message each time an error encountered
- compiler produces "stand alone code" / interpreter doesn't produce "stand alone code"
- compilation process is slow but resultant code runs very quickly / interpreted code runs slowly

14 (a) Any four points from:

- satellites transmit signals (to sat nav computer in the ship)
- computer receives/interprets these signals
- system depends on very accurate timing/use of atomic clocks
- each satellite transmits data including location and time
- computer in ship calculates its position based on at least 3 satellites
- at least 24 satellites in operation at a given time
- position of ship is known within 1 metre
- refer to triangulation:

satellite 3
(b) Any two benefits from:
- safer (can avoid known risks, identify safe harbour etc.)
- more accurate navigation
- can still navigate at night even under full cloud cover etc.
- the ship automatically transmits location 24/7
- ... if accident occurs, ship's exact location is known
- estimate time of arrival
(c) Any one from:
- output on LCD screen showing location in relation to known hazards etc.
- animation display (similar to a radar screen)
- verbal instructions

Page 11	Mark Scheme: Teachers' version	Syllabus

15 sample program:

total2 $=0$: totalenquiries $=0$
for day $=1$ to 7
input enquiries
--
total1 = 0
totalenquiries $=$ totalenquiries + enquiries
for $i=1$ to enquiries
input cust_enquiry (- - .-. (1 mark)
if cust_enquiry < 100000 then total $1=$ total $1+\uparrow$ - . . (1 mark)
if cust_enquiry >500000 then total $2=$ total $2+1$
(1 mark)
next i
print total1
next day

marking points

- initialisation of weekly total (total2) and total enquiries outside first loop
- correct first loop (controlling the number of days i.e. 7)
- input number of enquiries + control of the central loop
- initialisation of daily total inside first loop (total1)
- correct input of customer enquiry (inside second loop)
- check how many enquiries < 100000 and increment total
- check how many enquiries > 500000 and increment total
- calculation of total enquiries and percentage enquiries
- BOTH outputs in the correct place

