CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 0420/01, 0421/01
COMPUTER STUDIES
Paper 1

1 (a) buffer
any two from:
temporary
store/memory
compensates for speed of CPU/devices to be matched
holds data being transferred between peripheral devices and CPU example:
printer buffer to store data to be printed
(b) verification
any two from:
checking of data/correctness
by re-keying
comparing/use of second operator
double checking
example:
checking correctness of passwords
(c) gigabyte
any two from:
one thousand million/billion bytes
one thousand megabytes/8 billion bits
one million kilobytes
a unit of storage
2^{30} bytes
example:
reference to hard disk storage, etc.
(d) batch processing
any two from:
process does not start until
all data collected together
uses JCL
no user interaction
example:
payroll system
electricity/water/gas (etc.) billing
cheque processing
(e) file generations
any two from:
successive versions of a master file/GFS (periodically) updated used in cases of systems failure
to do back ups $=0$ transaction file used to update master file example:
supermarket stock control/updating stock
(8,589,934,592 bits)
proofreading $=0$ check transmission $=0$

2 (a) RAM (max: 1 mark)
any one from:
storage of (user's) data/holds program
memory that can be used to read from/write to/change
directly addressable
temporary store
volatile memory
reference to dynamic/static RAM
reference to operating system
(NOT direct access)
modem (max: 1 mark)
any one from:
modulator-demodulator
device which interconverts digital bits and analogue signals
to allow computer signals to be sent over phone lines
to connect to the Internet
scanner (max: 1 mark)
any one from:
device for transferring or copying printed documents/graphics
converting to pixels/storing a computer file/digitise to scan $=0$
(b) electronic conferencing
any two devices from:
microphone \quad telephone $=0$
speakers
cabling $=0$
web camera/video camera
network card $=0$
sound card
keyboard $=0$
video card
printer $=0$
monitor/screen
satellite dish
tv $=0$
(NOT modem, memory - already in question)

3 (a) any two from:
viruses can be introduced into the system possibility of bribery/extortion/blackmail
fraudulent use of account money stolen from accounts $=0$
industrial/commercial sabotage

$$
\text { fraud = } 0
$$

computer system shuts down
locking user out by changing passwords
(b) any two from:
passwords for users/files
PINs/passwords changed frequently
disconnection after 3 failed attempts at password
use of firewalls
use of encryption
dial back modems
(NOT physical devices such as locking door, computer)
(a) any two from:
users can access same files fast $=0$
avoids duplication
network s/ware cheaper than buying individual s/ware for each machine
sharing of expensive s/ware
easier to control access to the internet
messages can be sent between terminals/chatting
can monitor usage
shared printers/hardware
work can be accessed from any terminal
(b) any two from:
when file server down, all terminals down
viruses can spread to all terminals
wiring (e.g. fibre optics) is expensive to buy/install expensive $=0$
distance to printer(s)
prone to hacking
often slow due to busy network
cable broken/one terminal down can cause whole system to fail

5 (a) any two from:
account number/card number
sort code/branch code/bank code
name $=0$
expiry date/start date money in account $=0$
type of card (e.g. visa, master, etc.)
(NOT credit limit, PIN, issue number)
(b) any two from:
hologram built into card
embedded chip containing coded data
signature on back of card
check digit $=0$
picture
biometrics
digits on card
(c) any two from:
additional security identifier
card could be stolen/forged
to stop people getting money out illegally
acts like a password

6 (a) electronic scabbing

any two points from:
allows managers to switch
word processing/computer processing duties
from striking clerks in one country to non-striking clerks in another
(b) any three from:
redundancies/unemployment/retrenchment need for re-training/can't use hardware (and software)
expensive to set up/run
may be software problems
errors when transferring data to new system
security of data
deskilling
time to transfer data to new system
can be slow due to parallel running

$$
\text { virus }=0
$$

quality of transferred documents can sometimes be poor

Page 5

7 any three from:
items of user documentation (max: 2 marks): user doc = 0 specimen input specimen output manuals/user guide/instructions to operate troubleshooting/how to deal with errors sample runs
items of technical documentation (max: 2 marks): tech doc $=0$ how to load/run/install software/software requirements (e.g. OS) how to install hardware/hardware requirements file structures input/output screens/documents
testing strategy
decision tables
algorithms/program flowcharts
systems flowcharts/document flow
validation rules
(NOT costs, benefits)

8 (a) any two from:
most computers now have CD-ROM drives as well as/rather than
floppy disk drives
CDs are of better quality/more reliable
CD-ROM less likely to become corrupted
cannot delete/change data on CD-ROMs
would require too many floppy disks to hold program/files/data
cheaper to post out CDs
cheaper = 0
faster access
(NOT viruses, capacity of media)
(b) advantages
any two from:
faster than normal mail
sending images/animation $=0$
cheaper than post
easier to do repeat mailings
easier to get proof of confirmation of receipt
disadvantages
any two from:
customers may not have an e-mail address
e-mail protocol problems/e-mail server down
attached files too large
can't send original documents messages may become corrupted messages may be intercepted/hacking

9
(a) Code_Num
(b) 13504
(-1 mark for each additional answer)
(c) $(\operatorname{Power}(\mathrm{W})>70) \quad$ OR (Colour = "Silver") <--1 mark --> <1 mark> <--1 mark --->
(ignore case and quotes; don't accept 70W)
(d) $14010,13425,13416,13504,14001,14005$
<----1 mark----> <----1 mark---->

10 (a) (i) anything from row 1 or column A
(ii) any cell from D2:D7
(iii) any cell from B2:B7 or C2:C7 or E2:E7 or F2:F7
(b) (i) E2/F2
(ii) highlight G2
move to cell G2 copy/paste in cells G3:G7 drag formula into cells G3:G7 (or the equivalent)
(c) $\mathrm{SUM}(\mathrm{B} 2: \mathrm{B} 7)$ or $\mathrm{B} 2+\mathrm{B} 3+\mathrm{B} 4+\mathrm{B} 5+\mathrm{B} 6+\mathrm{B} 7$ or $\mathrm{SUM}(\mathrm{B} 2+\mathrm{B} 3+\mathrm{B} 4+\mathrm{B} 5+\mathrm{B} 6+\mathrm{B} 7)$
(d) any two from:
use of graphs to extend the line for future 6 months graphs $=0$ double the totals in row B8 and E8 use formulae in spreadsheet to calculate costs/total costs based on existing costs

11 (a) 150 abnormal reading
400 normal speed
800 high speed
(ignore word "speed" in answer)
(b) any two points from:
only data 0 to 9 would register all other data would give "abnormal reading" message/incorrect response variable whole would not exist
thus whole would be zero OR algorithm would crash/fail

12 (a) 4
F
(b) (1) 01111110
(2) 01110000
(c) (i) any one from:
drivers used to analogue instruments readings are steadier more accurate (because of infinite number of positions) easier to see "trends" in read outs/easier to understand
(ii) any one from: not as easy to read as digital needs to be interpreted by user mechanical device more likely to break down/fail

13 (a) any four points from:
gather data from experts set up user interface $=0$ create/design a knowledge base create/design structure relating items in knowledge base create/design interrogation technique create/design the screen outputs/inputs
reference to an inference engine create/design rule base
(b) any two features from:
question and answer dialogue hyperlinks = 0
help facility
coded maps (etc) displayed on screen showing mineral concentrations multichoice questions or yes/no questions
easy to use input screens/pull down menus/windows/icons

Page 8	Mark Scheme	Syllai

14 (a) any three from: pressure sensors
temperature sensors/thermistor
$\mathrm{pH} /$ acidity sensor
level sensor
thermocouple $=0$
ADC
thermometer $=0$
DAC
actuators
(ports, screens, printers $=0$)
(b) any two from:
information about output of a system sent back to computer to adjust, if necessary, input of system in such a way that output meets some desired values in memory compares stored values
(c) any two from:
removes human error/increases accuracy
can collect data over long periods of time/automatically data can be automatically stored and used in other programs safety considerations (chemical reaction)/hazardous conditions can be programmed to automatically display reaction status at regular intervals

$$
\begin{equation*}
(\text { costs }=0) \tag{2}
\end{equation*}
$$

Marks should be awarded as shown.

[6]
(a) wrong $=0$
for count $=1$ to 50 input number if number < 1000 or number > 9999
then wrong $=$ wrong +1
endif
next count
percent = wrong * 2
output wrong, percent
(accept flow charts but not essays)

(General answer:

Initialise variables	-1 mark
Loop control	-1 mark
Input number	-1 mark
Check numbers in range	-2 marks
Increment incorrect numbers total	-1 mark
Calculate the percentage	-1 mark
Output totals	-1 mark)

(b) any two validation checks with examples:
length check
example: make sure there are always 4 digits/characters input character check
example: make sure only numbers are input and not letters
type check
example: 0 decimal places/integer value
(format check, check digit, presence check $=0$)
(example must tie up with validation check for second mark and conversely)

