MARK SCHEME for the May/June 2015 series

9608 COMPUTER SCIENCE

9608/13

Paper 1 (Written Paper), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme							Syllabus	Paper
			Car	nbridge	Internatio	nal AS/A	Level – M	ay/June 2	015	9608	13
1	(a)	(i)			1	1					
			124	0	1	1	1	1	1	0	0
			-77	1	0	1	1	0	0	1	1
							•				[2
		(ii)	124:	7 C							
			-77:	B 3							[2
	(b)	(i)	0011	010	01 10	0 1					[1
		(ii)	 wh e.g de 	en denar j. to opera cimal frac	y numbers ate display ctions can	s need to b /s on a cal be accura	be electror culator wh tely repres	nically code ere each e sented	ed digit is rep	resented	[2

2

Activity	First pass or second pass
any symbolic address is replaced by an absolute address	2
any directives are acted upon	1
any symbolic address is added to the symbolic address table	1
data items are converted into their binary equivalent	1
forward references are resolved	2
	[5]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9608	13

3 (a) maximum of two marks for firewall description + maximum of two marks for authentication description

Firewall

- sits between the computer or LAN and the Internet/WAN and permits or blocks traffic • to/from the network
- can be software and/or hardware •
- software firewall can make precise decisions about what to allow or block as it can detect illegal attempts by specific software to connect to Internet
- can help to block hacking or viruses reaching a computer

Authentication

- process of determining whether somebody/something is who/what they claim to be
- frequently done through log on passwords/biometrics
- because passwords can be stolen/cracked, digital certification is used
- helps to prevent unauthorised access to data •
- (b) one mark for security, one mark for integrity:
 - integrity deals with validity of data/freedom from errors/data is reasonable •
 - security deals with protection of data
 - security protects data from illegal access/loss
 - integrity deals with making sure data is not corrupted after, for example, being transmitted
- (c) (i) one mark for each way of maintaining data security + one mark for an example/ enhancement
 - validation (to ensure data is reasonable)
 - examples include range checks, type checks, length checks, ...
 - verification (checks if data input matches original/if transmitted data matches • original)
 - can use double data entry or visual check/other methods such as parity checks
 - doesn't check whether or not data is reasonable
 - (ii) one mark for each way of maintaining data integrity + one mark for an example/ enhancement
 - parity checking •
 - one of the bits is reserved as parity bit
 - e.g. 10110110 uses odd parity
 - number of 1s must be odd
 - parity is checked at receiver's end
 - a change in parity indicates data corruption
 - check sum
 - adds up bytes in data being sent and sends check sum with the data
 - calculation is re-done at receiver's end
 - if not the same sum then the data has been corrupted during transmission

[3]

[2]

[3]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9608	13

(b) maximum of two marks for RAM and maximum of two marks for ROM

RAM

- loses contents when power turned off/volatile memory/temporary memory
- stores files/data/operating system currently in use
- data can be altered/deleted/read from and written to
- memory size is often larger than ROM

ROM

- doesn't lose contents when power turned off/non-volatile memory/permanent memory
- cannot be changed/altered/deleted/read only
- can be used to store BIOS/bootstrap

[3]

(c) one mark for DVD-RAM, one mark for flash memory.

DVD-RAM

- data is stored/written using lasers/optical media
- DVD-RAM uses phase changing recording, in which varying laser intensities cause targeted areas in the phase change recording layer to alternate between an amorphous and a crystalline state.
- uses a rotating disk with concentric tracks
- allows read and write operation to occur simultaneously

flash memory

- most are NAND-based flash memory
- there are no moving parts
- uses a grid of columns and rows that has two transistors at each intersection
- one transistor is called a floating gate
- the second transistor is called the control gate
- memory cells store voltages which can represent either a 0 or a 1
- essentially the movement of electrons is controlled to read/write
- not possible to over-write existing data; it is necessary to first erase the old data then write the new data in the same location

[2]

Page 6		6	Mark Scheme Syllabus	Paper
			Cambridge International AS/A Level – May/June 2015 9608	13
5	(a)	on	e mark for name of bus + one mark for description	
		ad	ldress bus	
		•	lines used to transfer address of memory or input/output location unidirectional bus	
		da	ita bus	
		•	used to transfer data between the processor and memory/input and output dev bidirectional bus	vices
		со	ontrol bus	
		•	used to transmit control signals e.g. read/write/fetch/ … dedicated bus since all timing signals are generated according to control signa	al [6]
	(b)	(i)	the program counter is <u>incremented</u>	[1]
		(ii)	the data stored at the address held in MAR is copied into the MDR	[1]
		(iii)	the contents of the Memory Data Register is <u>copied</u> into the Current Instruction Register	n [1]
	(c)	•	the <u>MAR</u> is loaded with the <u>operand of the instruction</u> // <u>loaded with 35</u> the <u>Accumulator</u> is loaded with the <u>contents of the address held in MAR</u> // the <u>Accumulator</u> is loaded with the <u>contents of the address 35</u>	[2]
	(d)	(i)	 a signal <u>from a device/program</u> that it <u>requires attention from the processor</u> 	[2]
		(ii)	 at a point during the fetch-execute cycle check for interrupt if an interrupt flag is set/ bit set in interrupt register all contents of registers are saved PC loaded with address of interrupt service routine 	[4]
				r.1

[5]

(b)

-			-	-	
Α	В	С	working	X	
0	0	0		1	1
0	0	1		1	} 1 mark
0	1	0		1	۱
0	1	1		0	} 1 mark
1	0	0		1	١
1	0	1		1	} 1 mark
1	1	0		1	
1	1	1		1	j î mark
L					

[4]

Page 8			Syllabus	Paper					
	Cambridge Intern	ational AS	S/A Leve	– May/J	une 2015		9608	13	
(c)	(c) ((A is NOT 1 AND B is 1) OR (B is NOT 1 OR C is 1)) AND C is NOT 1 < 1 mark > < 1 mark 1 mark 1 mark							>	
	NOTE: all brackets may not be shown – but check answer still correct								
	Alternatives include:								
	((NOT A AND B) OR (NOT B OR C)) AND NOT C								
	(A . B + (B + C)) . C								
	NOTE: expressions may b	e reversed	d but still	OK					
	(e.g. NOT C AND ((NOT	A AND B	3) OR (N		R C))				
	NOT C AND ((NOT	B OR C)	OR (NO	DTA AN	D B)) and	so on)	[3]	
7 (2)	(i)								
ι (α)	Accumulator: 0	1	1	1	0	1	0	1	
			1		<u> </u>			[1]	
(ii)	1			<u> </u>				
	Accumulator: 0	1	1	0	1	0	0	1	
	explanation							[']	
	• content of 124 is (111 1	1 1 1						
	 this is equivalent f 	to 127	1004					[0]	
/-	contents of 127 al	eurru	1001					[2]	
(iii)									
	Accumulator: 0	1	0	0	0	0	0	1	
	explanation								
	 index register value 120 + 6 = 126 	le = 6							
	 contents of 126 placed in the accumulator 								

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9608	13

(b) 1 mark for each correct value in the table.

Accumulator	Memory address							
	320	321	322	323				
	49	36	0	0				
36								
37								
				37				
49								
50								
			50					

[6]