

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			0580/42
Paper 4 (Extended)		Octo	ber/November 2013
			2 hours 30 minutes
Candidates answer on	the Question Paper.		
Additional Materials:	Electronic calculator Tracing paper (optional)	Geometrical instrumer	nts

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

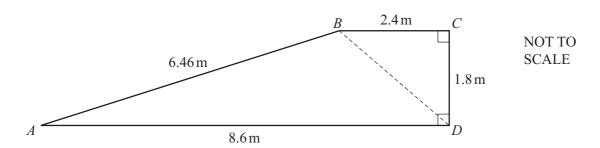
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 130.



1	Не	did n	r Mukthar earned \$18 900. not pay tax on \$5500 of his earnings. 24% tax on his remaining earnings.
	(a)	(i)	Calculate how much tax Mukthar paid last year.
		(**)	Answer(a)(i) \$ [2]
		(ii)	Calculate how much Mukthar earned each month after tax had been paid.
			Answer(a)(ii) \$ [2]
	(b)	Thi	s year Mukthar now earns \$19750.50.
		Cal	culate the percentage increase from \$18900.
			Answer(b) % [2]
	(c)	Mu	kthar has \$1500 to invest in one of the following ways.
			• Account A paying simple interest at a rate of 4.1% per year
			• Account B paying compound interest at a rate of 3.3% per year
		Wh	ich account will be worth more after 3 years and by how much?
			Answer(c) Account by \$ [5]

© UCLES 2013 0580/42/O/N/13

2

For Examiner's Use

The diagram shows the cross section, ABCD, of a ramp.

(a) Calculate angle *DBC*.

$$Answer(a)$$
 Angle $DBC = \dots [2]$

(b) (i) Show that BD is exactly 3 m.

Answer(b)(i)

[2]

(ii) Use the cosine rule to calculate angle ABD.

$$Answer(b)(ii)$$
 Angle $ABD =$ [4]

(c) The ramp is a prism of width 4 m.Calculate the volume of this prism.

 $\textit{Answer(c)} \hspace{0.1in} \dots \hspace{0.1in} m^{3} \hspace{0.1in} [3]$

For
Examiner's
Use

3	(a)	Write as a	single	fraction	in its	simples	et form
3	(a)	wille as a	Single	naction	111 115	Simples	st ioiiii.

$$\frac{2x-1}{2} - \frac{3x+1}{5}$$

$$(2x-3)^2 - 3x(x-4)$$

Answer(b) [4]

$$2x^2 + 5x - 3$$

Answer(c)(i) [2]

(ii) Simplify.

$$\frac{2x^2 + 5x - 3}{2x^2 - 18}$$

4

O 8 cm
A
NOT TO
SCALE

A wedge of cheese in the shape of a prism is cut from a cylinder of cheese of height h cm. The radius of the cylinder, OA, is 8 cm and the angle $AOB = 42^{\circ}$.

(a) (i) The volume of the wedge of cheese is 90 cm³.

Show that the value of *h* is 3.84 cm correct to 2 decimal places.

Answer(a)(i)

[4]

For

Examiner's

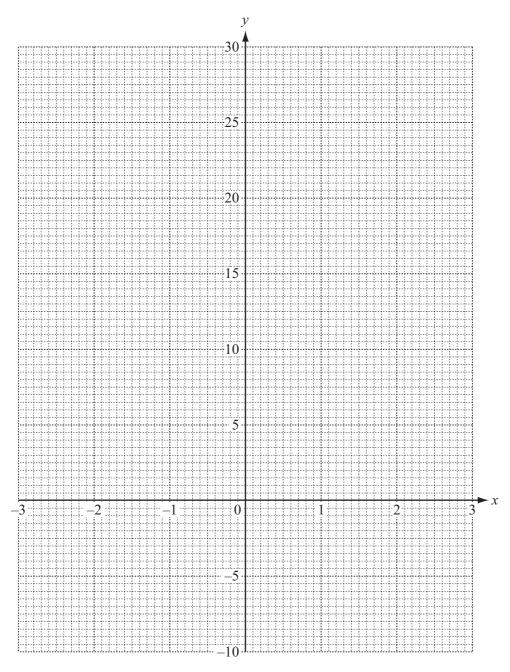
Use

(ii) Calculate the total surface area of the wedge of cheese.

Answer(a)(ii) cm² [5]

(b) A mathematically similar wedge of cheese has a volume of 22.5 cm³.

Calculate the height of this wedge.


Answer(b) cm [3]

5 (a) Complete the table of values for $y = \frac{2}{x^2} - \frac{1}{x} - 3x$.

x	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3
у	9.6		6		26.5	18.0		-2	-6	-9.1

[3]

(b) Draw the graph of $y = \frac{2}{x^2} - \frac{1}{x} - 3x$ for $-3 \ Y \ x \ Y \ -0.3$ and $0.3 \ Y \ x \ Y \ 3$.

[5]

(c) Use your graph to solve these equations.

(i)
$$\frac{2}{x^2} - \frac{1}{x} - 3x = 0$$

Answer(c)(i)
$$x =$$
 [1]

(ii)
$$\frac{2}{x^2} - \frac{1}{x} - 3x - 7.5 = 0$$

Answer(c)(ii)
$$x =$$
 or $x =$ [3]

(d) (i) By drawing a suitable straight line on the graph, solve the equation $\frac{2}{x^2} - \frac{1}{x} - 3x = 10 - 3x$.

Answer(d)(i)
$$x =$$
 or $x =$ [4]

(ii) The equation $\frac{2}{x^2} - \frac{1}{x} - 3x = 10 - 3x$ can be written in the form $ax^2 + bx + c = 0$ where a, b and c are integers.

Find the values of a, b and c.

Answer(d)(ii)
$$a = \dots, b = \dots, c = \dots$$
 [3]

For
Examiner
Use

E N L A R G E	M E	N	T

Prettie picks a card at random from the 11 cards above and does not replace it. She then picks a second card at random and does not replace it.

- (a) Find the probability that she picks
 - (i) the letter L and then the letter G,

(ii) the letter E twice,

(iii) two letters that are the same.

Answer(a)(iii)[2]

© UCLES 2013 0580/42/O/N/13

(b)	Pret	tie now picks a third card at random.	For Examiner's
	Fino	d the probability that the three letters	Use
	(i)	are all the same,	
		$Answer(b)(i) \qquad [2]$	
	(ii)	do not include a letter E,	
		Answer(b)(ii)[2]	
	(iii)	include exactly two letters that are the same.	
		Answer(b)(iii)[5]	

For

7	Her	ma flies from Johannesburg to Hong Kong. plane leaves Johannesburg at 1845 and arrives in Hong Kong 13 hours and 25 minutes later. c local time in Hong Kong is 6 hours ahead of the time in Johannesburg.	For Examiner's Use
	(a)	At what time does Noma arrive in Hong Kong?	
		Answer(a)[2]	
	(b)	Noma sleeps for part of the journey. The time that she spends sleeping is given by the ratio	
		sleeping: awake = 3:4.	
		Calculate how long Noma sleeps during the journey. Give your answer in hours and minutes.	
		Anguay(h) h min [2]	
		Answer(b) h min [2]	

© UCLES 2013 0580/42/O/N/13

For

(c)	(i)	The distance from Hong Kong to Johannesburg is 10712 km. The time taken for the journey is 13 hours and 25 minutes.	Examiner's Use
		Calculate the average speed of the plane for this journey.	
		Answer(c)(i) km/h [2]	
	(ii)	The plane uses fuel at the rate of 1 litre for every 59 metres travelled.	
		Calculate the number of litres of fuel used for the journey from Johannesburg to Hong Kong. Give your answer in standard form.	
		Answer(c)(ii) litres [4]	
(d)		e cost of Noma's journey is 10148 South African Rand (R). s is an increase of 18% on the cost of the journey one year ago.	
	Cal	culate the cost of the same journey one year ago.	
		Answer(d) R[3]	
			1

8
$$f(x) = 4x + 3$$
 $g(x) = \frac{7}{x+1} (x, -1)$ $h(x) = x^2 + 5x$

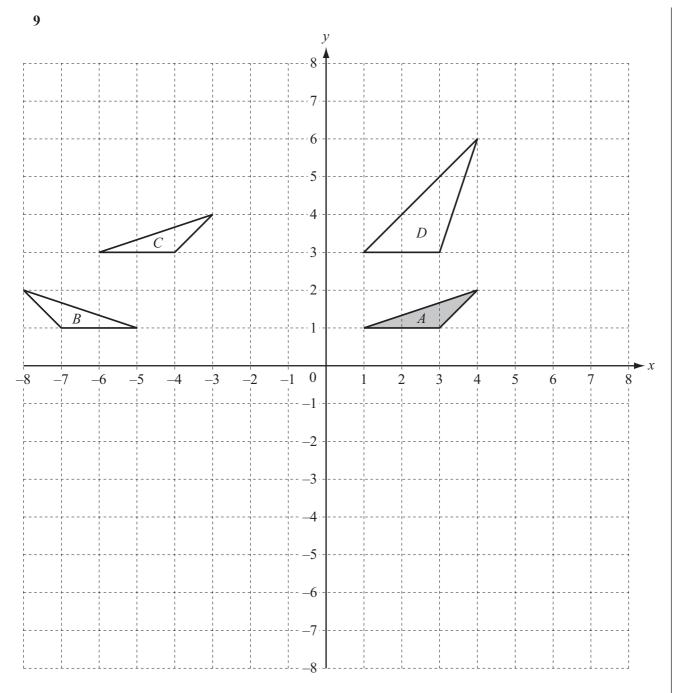
For Examiner's Use

- (a) Work out
 - (i) h(-3),

Answer(a)(i)[1]

(ii) hg(13).

(b) Find $f^{-1}(x)$.


Answer(b) $f^{-1}(x) = \dots [2]$

© UCLES 2013

For Examiner's Use

(c)	(i)	Solve the equation	f(x) = 23.	
			$Answer(c)(i) x = \dots [2$	<u>!]</u>
	(ii)	Solve the equation	h(x) = 7.	
		Show all your worki	ing and give your answers correct to 2 decimal places.	
			$Answer(c)(ii) x = \dots or x = \dots [5]$;]

For Examiner's Use

- (a) Describe fully the **single** transformation that maps triangle A onto
 - (i) triangle B,

 Answer(a)(i)

 - (iii) triangle D.

 Answer(a)(iii) [3]

(b) On	the grid, draw		For Examiner's Use			
(i)	(i) the rotation of triangle A about $(6, 0)$ through 90° clockwise, [2]					
(ii)	the enlargement of triangle A by scale factor -2 with centre $(0, -1)$,	[2]				
(iii)	the shear of triangle A by shear factor -2 with the y -axis invariant.	[2]				
(a) Ein	Address and the design of the					
(c) Fin	d the matrix that represents the transformation in part (b)(iii).					
	Answer(c)	[2]				

Question 10 is printed on the next page.

10 Complete the table for the following sequences. The first row has been completed for you.

For Examiner's Use

	Sequence				Next two terms	<i>n</i> th term	
	1	5	9	13	17 21	4n – 3	
(a)	12	21	30	39			[3]
(b)	80	74	68	62			[3]
(c)	1	8	27	64			[2]
(d)	2	10	30	68			[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2013 0580/42/O/N/13