CANDIDATE NAME

MATHEMATICS

0580/43
Paper 4 (Extended)
October/November 2013
2 hours 30 minutes
Candidates answer on the Question Paper.
Additional Materials: Electronic calculator Geometrical instruments Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
If working is needed for any question it must be shown below that question.
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 130 .

1 (a) (i) In a camera magazine, 63 pages are used for adverts.
The ratio number of pages of adverts: number of pages of reviews $=7: 5$.
Calculate the number of pages used for reviews.

> Answer(a)(i)
(ii) In another copy of the magazine, 56 pages are used for reviews and for photographs. The ratio number of pages of reviews : number of pages of photographs $=9: 5$.

Calculate the number of pages used for photographs.

Answer(a)(ii)
(iii) One copy of the magazine costs $\$ 4.90$.

An annual subscription costs $\$ 48.80$ for 13 copies.
Calculate the percentage discount by having an annual subscription.
(b) In a car magazine, 25% of the pages are used for selling second-hand cars, $62 \frac{1}{2} \%$ of the remaining pages are used for features, and the other 36 pages are used for reviews.

Work out the total number of pages in the magazine.

2 A field, $A B C D$, is in the shape of a quadrilateral.
A footpath crosses the field from A to C.

NOT TO
SCALE
(a) Use the sine rule to calculate the distance $A C$ and show that it rounds to 119.9 m , correct to 1 decimal place.

Answer(a)
(b) Calculate the length of $B C$.
(c) Calculate the area of triangle $A C D$.
(d) The field is for sale at $\$ 4.50$ per square metre. Calculate the cost of the field.

3 A rectangular metal sheet measures 9 cm by 7 cm .
A square, of side $x \mathrm{~cm}$, is cut from each corner.
The metal is then folded to make an open box of height $x \mathrm{~cm}$.

NOT TO
SCALE
(a) Write down, in terms of x, the length and width of the box.

$$
\begin{aligned}
& \text { Answer(a) Length }= \\
& \text { Width }=
\end{aligned}
$$

(b) Show that the volume, V, of the box is $4 x^{3}-32 x^{2}+63 x$.

Answer(b)
(c) Complete this table of values for $\quad V=4 x^{3}-32 x^{2}+63 x$.

x	0	0.5	1	1.5	2	2.5	3	3.5
V	0		35	36	30		9	0

(d) On the grid opposite, draw the graph of $\quad V=4 x^{3}-32 x^{2}+63 x$ for $0 \mathrm{Y} x \mathrm{Y} 3.5$.

Three of the points have been plotted for you.

(e) The volume of the box is at least $30 \mathrm{~cm}^{3}$.

Write down, as an inequality, the possible values of x.

Answer(e)
[2]
(f) (i) Write down the maximum volume of the box.

Answer(f)(i)
cm^{3} [1]
(ii) Write down the value of x which gives the maximum volume.

Answer(f)(ii)

4 (a) One angle of an isosceles triangle is 48°.
Write down the possible pairs of values for the remaining two angles.

Answer(a) \qquad and \qquad
\qquad and \qquad
(b) Calculate the sum of the interior angles of a pentagon.

Answer(b)
(c) Calculate the sum of the angles a, b, c, d, e, f and g shown in this diagram.

NOT TO
SCALE
(d) The trapezium, $A B C D$, has four angles as shown.

All the angles are in degrees.

NOT TO
SCALE
(i) Show that $7 x+4 y=390$.

Answer(d)(i)
(ii) Show that $2 x+3 y=195$.

Answer(d)(ii)
(iii) Solve these simultaneous equations.

Answer(d)(iii) $x=$ \qquad
$y=$
(iv) Use your answer to part (d)(iii) to find the sizes of all four angles of the trapezium.
\qquad ,

5 (a) 80 students were asked how much time they spent on the internet in one day. This table shows the results.

Time $(t$ hours $)$	$0<t \mathrm{Y} 1$	$1<t \mathrm{Y} 2$	$2<t \mathrm{Y} 3$	$3<t \mathrm{Y} 5$	$5<t \mathrm{Y} 7$	$7<t \mathrm{Y} 10$
Number of students	15	11	10	19	13	12

(i) Calculate an estimate of the mean time spent on the internet by the 80 students.
\qquad
(ii) On the grid, complete the histogram to show this information.

(b) The probability that Chaminda uses the internet on any day is $\frac{3}{5}$.

The probability that Niluka uses the internet on any day is $\frac{3}{4}$.
(i) Complete the tree diagram.

(ii) Calculate the probability, that on any day, at least one of the two students uses the internet.

Answer(b)(ii) \qquad
(iii) Calculate the probability that Chaminda uses the internet on three consecutive days.

6 Sandra has designed this open container.
The height of the container is 35 cm .

NOT TO
SCALE

The cross section of the container is designed from three semi-circles with diameters $17.5 \mathrm{~cm}, 6.5 \mathrm{~cm}$ and 24 cm .

NOT TO
SCALE
(a) Calculate the area of the cross section of the container.

Answer(a) \qquad cm^{2} [3]
(b) Calculate the external surface area of the container, including the base.
\qquad cm^{2} [4]
(c) The container has a height of 35 cm .

Calculate the capacity of the container.
Give your answer in litres.

Answer(c)
(d) Sandra's container is completely filled with water.

All the water is then poured into another container in the shape of a cone.
The cone has radius 20 cm and height 40 cm .

NOT TO
SCALE
\qquad

SCALE
(i) The diagram shows the water in the cone.

Show that $\quad r=\frac{h}{2}$.
Answer(d)(i)
(ii) Find the height, h, of the water in the cone.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]

7 (a) The co-ordinates of P are $(-4,-4)$ and the co-ordinates of Q are $(8,14)$.
(i) Find the gradient of the line $P Q$.
\qquad
Answer(a)(i)
[2]
(ii) Find the equation of the line $P Q$.

Answer(a)(ii)
(iii) Write $\overrightarrow{P Q}$ as a column vector.

$$
\text { Answer(a)(iii) } \quad \overrightarrow{P Q}=(
$$

(iv) Find the magnitude of $\overrightarrow{P Q}$.

Answer(a)(iv)

(b)

In the diagram, $\overrightarrow{O A}=4 \mathbf{a}$ and $\overrightarrow{O B}=3 \mathbf{b}$.
R lies on $A B$ such that $\overrightarrow{O R}=\frac{1}{5}(12 \mathbf{a}+6 \mathbf{b})$.
T is the point such that $\overrightarrow{B T}=\frac{3}{2} \overrightarrow{O A}$.
(i) Find the following in terms of \mathbf{a} and \mathbf{b}, giving each answer in its simplest form.
(a) $\overrightarrow{A B}$

$$
\text { Answer(b)(i)(a) } \overrightarrow{A B}=
$$

(b) $\overrightarrow{A R}$

$$
\text { Answer(b)(i)(b) } \overrightarrow{A R}=
$$

(c) $\overrightarrow{O T}$

$$
\text { Answer(b)(i)(c) } \overrightarrow{O T}=
$$

(ii) Complete the following statement.

The points O, R and T are in a straight line because \qquad
\qquad
(iii) Triangle $O A R$ and triangle $T B R$ are similar.

Find the value of $\frac{\text { area of triangle } T B R}{\text { area of triangle } O A R}$.

8 (a) Rearrange $s=u t+\frac{1}{2} a t^{2}$ to make a the subject.
(b) The formula $v=u+$ at can be used to calculate the speed, v, of a car. $u=15, a=2$ and $t=8$, each correct to the nearest integer. Calculate the upper bound of the speed v.
(c) The diagram shows the speed-time graph for a car travelling between two sets of traffic lights.

(i) Calculate the deceleration of the car for the last 5 seconds of the journey.
Answer(c)(i)
\qquad
(ii) Calculate the average speed of the car between the two sets of traffic lights.

9 The first four diagrams in a sequence are shown below.

Diagram 1

Diagram 2

Diagram 3

Diagram 4

The diagrams are made from dots (•) and squares ($\mathbf{\square}$) joined by lines.
(a) Complete the table.

Diagram	1	2	3	4	5	n
Number of dots	6	9	12			
Number of squares	0	1	3			$\frac{1}{2} n(n-1)$
Number of triangles	4	9	16			
Number of lines	9	18	30	45	63	$\frac{3}{2}(n+1)(n+2)$

(b) Which diagram has 360 lines?
(c) The total number of lines in the first n diagrams is

$$
\frac{1}{2} n^{3}+p n^{2}+q n
$$

(i) When $n=1$, show that $p+q=8 \frac{1}{2}$. Answer(c)(i)
(ii) By choosing another value of n and using the equation in part (c)(i), find the values of p and q.

$$
\text { Answer(c)(ii) } p=
$$

$$
q=
$$

10 (a) Simplify.

$$
\frac{x^{2}-3 x}{x^{2}-9}
$$

Answer (a)

(b) Solve.

$$
\frac{15}{x}-\frac{20}{x+1}=2
$$

\qquad or $x=$ \qquad

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

