MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/21
Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	21

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1	8.1722 cao	2	B1 for 8.17 or 8.172 or 8.1721 or 8.17215...
2	$\begin{array}{llllllll}3 & 3.14 & \pi & 3.142 & \frac{22}{7}\end{array}$	2	B1 for $3.141[5$...] to 3.1416 and 3.1428 to 3.1429 or 3.143 seen or SC1 for 4 in correct order
$3 \quad \text { (a) }$ (b)	$\begin{aligned} & \text { E B A cao } \\ & Z \text { cao } \end{aligned}$	1 1	
$4 \quad$ (a) (b)	$\begin{aligned} & -3 \\ & 4 \end{aligned}$	$\begin{gathered} 1 \\ 1 \mathrm{FT} \end{gathered}$	FT their numerical mode
5	$\begin{aligned} & \frac{3}{12} \text { and } \frac{2}{12} \\ & \frac{5}{12} \text { cao } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Equivalent denominators can be used, working must be shown.
$6 \quad \text { (a) }$	$\begin{aligned} & 15.1 \text { cao } \\ & 20 \text { cao } \end{aligned}$	1 1	
7	$2.5[0]$ or $2.501 \ldots$ nfww	3	M2 for $2.1 \times\left(1+\frac{6}{100}\right)^{3}$ oe or M1 for $2.1 \times\left(1+\frac{6}{100}\right)^{n}$ oe where $n \geq 2$ or for figs $21 \times\left(1+\frac{6}{100}\right)^{3}$ oe
8	0.29 cao	3	M2 for $30-(24 \times 1.2378)$ or $(24 \times 1.2378)-30$ or M1 for 24×1.2378
$9 \quad$ (a) (b)	$\begin{aligned} & 280 \\ & 5 \times 10^{6} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 for 5000000 oe or B1 for answer $k \times 10^{6}$ or 5×10^{k}

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	21

10	3.75 oe	3	M2 for $3 \times 5=7 x-3 x$ oe or M1 for $3(x+5)=7 x$ or $x+5=\frac{7}{3} x$ or $1+\frac{5}{x}=\frac{7}{3}$ or better
11 (a) (b)	x^{6} $\frac{x^{2}}{3}$		B1 for answer $k x^{2}$ or $\frac{x^{k}}{3}$ or $\frac{1}{3}$
12	${ }_{-5} \text { nfww }$	3	M1 for correctly eliminating one variable A1 for $x=5$ A1 for $y=-5$ If zero scored SC1 for correct substitution and evaluation to find the other variable
13	[\pm] 8 nfww	3	M1 for $y=k \sqrt{x+5}$ A1 for $k=[\pm] 2$ or M2 for $\frac{4}{\sqrt{-1+5}}=\frac{y}{\sqrt{11+5}}$ oe
14	$\left(\begin{array}{cc}4 & 16 \\ 2 & 8\end{array}\right)$	3	$\begin{aligned} & \text { M2 for }\left(\begin{array}{rr} 12 & 48 \\ 6 & 24 \end{array}\right) \text { and }\left(\begin{array}{ll} 8 & 32 \\ 4 & 16 \end{array}\right) \\ & \text { or M1 for }\left(\begin{array}{rr} 12 & 48 \\ 6 & 24 \end{array}\right) \text { or for }\left(\begin{array}{ll} 8 & 32 \\ 4 & 16 \end{array}\right) \end{aligned}$
15 (a) (i) (ii) (b)		2 2 2	B2 for correct ruled bisector with correct arcs or B1 for correct bisector with no/incorrect arcs B2 for correct ruled bisector with correct arcs or B1 for correct bisector with no/incorrect arcs correct shading
16	142 or 142.0...	5	B1 for $C B D=30$ M2 for $[\sin D=] \frac{6 \times \sin \text { their } B}{8}$ oe or M1 for $\frac{6}{\sin D}=\frac{8}{\sin (\text { their } 30)}$ oe A1 for $[D=] 22$ or 22.0 or $22.02 \ldots$ B1FT for $90+($ their $30+$ their22) evaluated correctly for their final answer or for $360-90$ - their $B C D$ evaluated correctly for their final answer

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	21

17	890 or 890.1 to $890.2 . .$.	5	M4 for $\frac{1}{2} \times\left(\frac{4}{3} \times \pi \times 5^{3}\right)+\pi \times 5^{2} \times 8$ or M3 for $\frac{1}{2} \times\left(\frac{4}{3} \times \pi \times 5^{3}\right)$ and $\pi \times 5^{2} \times 8$ or M2 for $\frac{1}{2} \times\left(\frac{4}{3} \times \pi \times 5^{3}\right)$ or $\pi \times 5^{2} \times 8$ or M1 for $\frac{4}{3} \times \pi \times 5^{3}$
18 (a) (b)	$0.6 \quad 0.2 \quad 0.8$ in correct places 0.52 oe nfww	2 3	B1 for 0.6 in correct place B1 for 0.2 and 0.8 in correct places M2FT for 1 - (their $0.6 \times$ their 0.8) oe or M1FT for a correct product from their tree in (a)
19 (a) (b) (c) (i) (ii)	$C B A$ and $B D A$ are equilateral oe $67[.0] \text { or } 67.02 \text { to } 67.03$ $39.3 \text { or } 39.28 \text { to } 39.33$ 78.6 or 78.7 or 78.56 to 78.66	1 2 3 1FT	M1 for $\frac{120}{360} \times \pi \times 8^{2}$ oe M2FT for their $(\mathbf{b})-\frac{1}{2} \times 8^{2} \times \sin 120$ oe or M1 for $\frac{1}{2} \times 8^{2} \times \sin 120$ oe FT $2 \times$ their $(\mathbf{c})(\mathbf{i})$ correctly evaluated
20 (a) (b) (c)	0.4 or $\frac{2}{5}$ -0.8 or $-\frac{4}{5}$ $3 x-6$ or $3(x-2)$ nfww	2 2 3	B1 for [f(2) =] 4 or M1 for $\frac{2}{(3 x-2)+1}$ or better M1 for $2=10(x+1)$ or better M2 for $3(2 x)-2-(3(x+2)-2)$ or M1 for $[\mathrm{f}(2 x)=] 3(2 x)-2$ or $[\mathrm{f}(x+2)]=3(x+2)-2$

