MARK SCHEME for the October／November 2014 series

0580 MATHEMATICS

0580／22
Paper 2 （Extended），maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	22

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1	$6+5 \times(10-8)=16$	1	One pair of brackets only
2	20	1	
3	8	1	
4	ξ	1 1	
5	$v^{3}-p$	2	M1 for $v^{3}=p+r$
6	95.5 96.5 in correct places cao	2	B1 for 95.5 or 96.5 in correct place or for answers reversed
$7 \quad$ (a) (b)	$\begin{aligned} & 700 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	M1 for 2800×0.325
8	$\frac{7}{6}$ oe their $\frac{7}{6} \times \frac{8}{7}$ oe $\frac{4}{3}$ or $1 \frac{1}{3}$ cao must see working	B1 M1 A1	Or M1 for $\frac{56}{48} \div \frac{42}{48}$ or equivalent division with fractions with common denominator

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	22

9	9.13 or 9.127 to 9.1271	3	$\begin{aligned} & \text { M2 for } \sqrt[3]{\frac{1000}{440}}[1.31] \mathrm{oe} \\ & \text { or } \sqrt[3]{\frac{440}{1000}}[0.761] \mathrm{oe} \\ & \text { Or M1 for } \frac{1000}{440}[2.27] \mathrm{oe} \\ & \text { or } \frac{440}{1000}[0.44] \mathrm{oe} \\ & \quad \text { or } \sqrt[3]{\frac{f i g s 440}{f i g s 1000}} \text { or } \sqrt[3]{\frac{f \text { figs } 1000}{\operatorname{tigs440}}} \end{aligned}$
10	97.2[0]	3	M1 for $C=k r^{2}$ A1 for $k=30$ or M2 for $\frac{202.8}{2.6^{2}}=\frac{c}{1.8^{2}}$ oe
11 (a) (b)	$\left(\begin{array}{cc} 6 & -4 \\ -8 & 38 \end{array}\right)$ 14	2 1	M1 for a 2 by 2 matrix with two correct elements $\mathbf{S C 1} \text { for }\left(\begin{array}{cc} 16 & -14 \\ -18 & 28 \end{array}\right)$
12		3	
13	13.5 or 13.45[..]	3	$\begin{aligned} & \text { M2 for } \sqrt{\frac{2 \times 85}{\sin 110}} \\ & \text { or M1 for } 1 / 2 \times a^{2} \times \sin 110=85 \\ & \quad \text { or } \frac{2 \times 85}{\sin 110} \text { oe }[180.9 . .] \end{aligned}$
14 (a) (b)	2.47 or 2.474 to 2.4744 0.742 or 0.7422 to 0.74232	2 1FT	M1 for $\frac{56}{360} \times \pi \times 2.25^{2}$ oe FT their (a) $\times 0.3[0]$ correctly evaluated.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	22

15 (a) (b)	$2 \times 3 \times 3 \times 5$ 630	2	B1 for 2, 3, [3] and 5 identified as only prime factors or M1 for partial prime factorisation $6 \times 3 \times 5$ or $2 \times 9 \times 5$ or $3 \times 3 \times 10$ or $2 \times 3 \times 15$ M1 for $2 \times 3^{2} \times 5 \times 7$ oe or for listing multiples of 90 and 105 at least up to 630
16 (a) (b) (i) (ii)	108 Angle at centre is twice angle at circumference oe $\begin{aligned} & -\frac{4}{3} \text { oe } \\ & -1 \end{aligned}$	1 1 1 1 1	
17	[0.]08	4	M3 for $200 \times\left(1+\frac{2}{100}\right)^{2}-200-\frac{200 \times 2 \times 2}{100}$ oe or M1 for $200 \times\left(1+\frac{2}{100}\right)^{2}$ and M1 for $\frac{200 \times 2 \times 2}{100}[+200]$
18 (a) (b) (i) (ii)	56 63 or 63 to 63.5 22 or 21.6 to 23 nfww	2 1	B1 for 16 soi or M1 for 72 - their 16 B1 for 49.8 to 50.2 seen or 71.8 to 72.8
(ii) (b)	$\begin{align*} & \mathbf{c}-\mathbf{a} \tag{i}\\ & -\frac{1}{3} \mathbf{a}+\frac{1}{3} \mathbf{c} \\ & \overrightarrow{A C} \text { is a multiple of } \overrightarrow{A X} \\ & \text { and } \\ & \text { they share a common point }[\mathrm{A}] \end{align*}$	1	M2 for $-\mathbf{a}+\frac{1}{3}(\mathbf{c}+2 \mathbf{a})$ oe e.g. $-\mathbf{a}+\mathbf{c}+2 \mathbf{a}-\frac{2}{3}(\mathbf{c}+2 \mathbf{a})$ Or M1 for a correct route from A to X oe oe

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	22

$\begin{array}{ll} 20 & \text { (a) } \\ & \text { (b) } \end{array}$	102 to 106 Correct position of F with correct arcs for angle bisector	2 5	B1 for 5.1 to 5.3 seen B2 for Correct ruled angle bisector of A with correct arcs or B1 for correct bisector with no/wrong arcs and B2 for Arc centre C, radius 8 cm or $\mathbf{B 1}$ for arc centre C with incorrect radius or correct conversion to 8 cm and B1 for marking position of F on their bisector and 8 cm from C or on their arc centre C
21 (a) (b)	$\frac{x+7}{(2 x-1)(x+2)}$ Final answer $\frac{2 x}{x+7}$ Final answer	3 4	B1 for $3(x+2)-1(2 x-1)$ seen or better B1 for denominator $(2 x-1)(x+2)$ oe seen SC2 for final answer $\frac{x+5}{(2 x-1)(x+2)}$ M1 for $4 x(x-4)$ or partial factorisation of numerator and M2 for $[2](x+7)(x-4)$ oe or M1 for $[2]\left(x^{2}+3 x-28\right)$ or $[2](x+a)(x+b)$ where $a b=-28$ or $a+b=3$ SC3 for answer $\frac{4 x}{2 x+14}$ oe

