MARK SCHEME for the October／November 2014 series

0580 MATHEMATICS

0580／41
Paper 4 （Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	41

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu	Answers	Mark	Part Marks
		2	M1 for $72 \div(7+2+3)$
		2	M1 for $13.5 \div 3 \times(7+2+3)$ oe
		3	M2 for $8.4[0] \div 1.12$ oe or M1 for 112[\%] associated with [\$]8.4[0] oe
	$6 \times 0.5 \times 2 \times 2 \times \sin 60$ oe	M2	M1 for a correct relevant area inside the hexagon e.g. $0.5 \times 2 \times 2 \sin 60$ oe
	10.38 to $10.39[\ldots][=10.4]$	A1	Must see 10.38 to 10.39 [...]
	4.67 to 4.68	2	M1 for $10.4 \times$ figs 45 [figs 467 to 468]
	273	4	M1 for their (b)(ii) $\times 1250 \div 1000$ A1 FT for their (b)(ii) $\times 1250 \div 1000$ evaluated to at least 3 sf
			M1dep on previous M1 for their mass in tonnes (rounded up) $\times 45.5[0]$ if between 6 and 10 or for their mass in tonnes (rounded up) $\times 47$ [.00] if between 1 and 5 or for their mass in tonnes (rounded up) $\times 44$ [.00] if over 10

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	41

Qu	Answers	Mark	Part Marks
2 (a) $\begin{aligned} & \\ & \text { (b) } \\ & \text { (i) }\end{aligned}$	$[\pm] \sqrt{v^{2}+2 a s}$ final answer	2	M1 for correct first step, i.e. $u^{2}=v^{2}+2 a s$
	$\frac{60}{x}+\frac{45}{x+4}=6 \mathrm{oe}$	M2	B1 for either $\frac{60}{x}$ or $\frac{45}{x+4}$ seen
	$60(x+4)+45 x=6 x(x+4)$ or better	M1	Dep on M2
	$\begin{aligned} & 60 x+240+45 x=6 x^{2}+24 x \text { oe } \\ & 0=2 x^{2}-27 x-80 \end{aligned}$	A1	$\left[6 x^{2}-81 x-240=0\right]$ Dep on M3 and brackets expanded and with no errors or omissions throughout
	16 final answer	3	M2 for $(x-16)(2 x+5)[=0]$ or M1 for partial factorisation e.g. $x(2 x+5)-16(2 x+5)$ or SC1 for $(x+a)(2 x+b)[=0]$ where $a b=-80$ or $2 a+b=-27$
			or $\mathbf{B} \mathbf{2}$ for $\frac{--27+o r-\sqrt{(-27)^{2}-4.2 .-80}}{2.2}$ or $[-] \sqrt{40+\left(\frac{27}{4}\right)^{2}}+\frac{27}{4}$ or $\mathbf{B 1}$ for $\frac{--27+o r-\sqrt{q}}{2.2}$ or $\sqrt{(-27)^{2}-4.2 .-80}$ or $\left(x-\frac{27}{4}\right)^{2}$
(c) $\begin{aligned} & \text { (i) } \\ & \text { (ii) }\end{aligned}$	$0.75 \times 20[=15]$	1	
	150 cao	4	$\begin{aligned} & \text { M3 for } 90+T=1800 \times 2 \div 15 \text { oe or } \\ & T-110=(1800-(90 \times 15)-(20 \times 15 \div 2)) \times 2 \div 15 \\ & \text { oe } \\ & \text { or } t=(1800-(90 \times 15)-(20 \times 15 \div 2)) \times 2 \div 15 \text { oe } \\ & {[t=40]} \end{aligned}$
			or M2 for $1 / 2(90+T) \times 15=1800$ oe or $1 / 2(T-110) \times 15+90 \times 15+1 / 2(20 \times 15)=1800$ oe or $1800-1 / 2 \times 20 \times 15-90 \times 15$ oe [300 for area of 'end' triangle]
			or M1 for method for area of triangle or rectangle or trapezium soi

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	41

Qu	Answers	Mark	Part Marks
(d)	10 cao nfww	3	M2 for $22.5 \div 2.25$ or M1 for 21.5 to $22.5 \div 2.25$ to 2.75 or B1 for 22.5 or 2.25 seen
3 (a)	$\begin{aligned} & \text { Correct reflection } \\ & (0,1)(3,1)(3,3) \end{aligned}$	1	
(b)	$\begin{aligned} & \text { Correct rotation } \\ & (-5,1)(-7,1)(-5,4) \end{aligned}$	2	SC1 for rotation of 90° anticlockwise about the wrong centre or 90° clockwise about $(-4,0)$ or for 3 correct points plotted but not joined
(c) (i)	Enlargement [scale factor] 2 [centre] $(-7,7)$	3	B1 for each
(ii)	$1: 4$ or $3: 12$ or $1 / 4: 1$	2	M1 for $1: 2^{2}$ oe, e.g. $(3 \times 2) / 2:(6 \times 4) / 2$ or SC1 for $4: 1$ or $12: 3$ or $1: 1 / 4$
(d)	$\left(\begin{array}{ll} 4 & 0 \\ 0 & 1 \end{array}\right)$	2	B1 for $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right), k$ may be algebraic or numeric but $\neq 0$ or 1 $\text { or } \mathbf{S C 1} \text { for }\left(\begin{array}{ll} 1 & 0 \\ 0 & 4 \end{array}\right)$
(e) (i)	Correct shear drawn $(0,1)(-3,-5)(-3,-3)$	3	B2 for two correct points plotted or if not plotted correctly shown in working or B1 for $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)\binom{-3}{3}$ or $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)\binom{-3}{1}$ or $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)\binom{0}{1}$ or better
(ii)	Shear y-axis or $x=0$ invariant [factor] 2	3	B1 for each
(iii)	$\left(\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array}\right) \text { oe }$	2	B1 for [determinant =] 1 shown or stated or $k\left(\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right)$ soi, $k \neq 0$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	41

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answers \& Mark \& Part Marks \\
\hline \begin{tabular}{l}
(a) (i) \\
(ii) \\
(b) \\
(c) \\
(d) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\(11-x\) final answer \\
\(6 x^{2}-x y-12 y^{2}\) final answer \\
\(x\left(x^{2}-5\right)\) final answer \\
\(x \geqslant 4\) or \(4 \leqslant x\) final answer nfww
\[
\begin{aligned}
\& p=4.5 \mathrm{oe} \\
\& q=8.25 \mathrm{oe}
\end{aligned}
\] \\
-8.25 oe
\[
x=4.5 \text { oe }
\]
\end{tabular} \& 3

3 \& | M1 for $8 x-4-9 x+15$ |
| :--- |
| or |
| B1 for final answer $11-k x$ or $k-x$ |
| M2 for $6 x^{2}+8 x y-9 x y-12 y^{2}[=0]$ or for final answer with one error in a coefficient (includes sign) but otherwise correct |
| or M1 for any two of $6 x^{2}, 8 x y,-9 x y,-12 y^{2}$ |
| Condone $x(x-\sqrt{5})(x+\sqrt{5})$ as final answer |
| B2 for 4 with no/incorrect inequality or equals sign as answer |
| or M2 for $8 x+4 \leqslant 15 x-24$ or better |
| or M1 for $4(2 x+1) \leqslant 3(5 x-8)$ |
| B2 for one correct answer or for $(x-4.5)^{2}-8.25$ oe seen or M1 for $(x-4.5)^{2}$ oe seen or $x^{2}-p x-p x+p^{2}$ seen and |
| M1 for $p^{2}-q=12$ or $2 p=9$ |
| FT - their q |
| FT $x=$ their p |

\hline | 5 (a) |
| :--- |
| (b) |
| (c) | \& | $-2,5.5$ |
| :--- |
| Correct curve $\begin{aligned} & -2.6 \leqslant x \leqslant-2.4 \\ & 0.6 \leqslant x \leqslant 0.7 \\ & 1.8 \leqslant x \leqslant 1.9 \end{aligned}$ | \& 2

5

3 \& | B1 for each value |
| :--- |
| B5 for correct curve over full domain |
| or |
| B3FT for 9 or 10 points |
| or B2FT for 7 or 8 points |
| or B1FT for 5 or 6 points |
| Point must touch line if exact or be in correct square if not exact (including boundaries) |
| and |
| B1 independent for one branch on each side of the y-axis and not touching or crossing the y-axis |
| SC4 for correct curve with branches joined |
| B1 for each value |
| If $\mathbf{B 0}$ then $\mathbf{S C} \mathbf{1}$ for $y=5$ used |

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	41

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	41

Qu	Answers	Mark	Part Marks
7 (a) (i)	Any two of with conclusion Angle $A C D=$ angle $A B D$ Angle $C A B=$ angle $C D B$ Angle $A X C=$ angle $D X B$ AND 'triangles have equal angles' oe OR All three of without conclusion Angle $A C D=$ angle $A B D$ Angle $C A B=$ angle $C D B$ Angle $A X C=$ angle $D X B$	2	B1 for two pairs without a conclusion e.g. similar and AA or AAA
	(a) 10	2	M1 for $\frac{D X}{12.5}=\frac{3.2}{4}$ oe
	(b) $\begin{aligned} & 4^{2}+3.2^{2}-2 \times 4 \times \\ & 3.2 \cos 110\end{aligned}$	M2	or M1 for implicit version
	34.9 to 35	A1	Implied by answer 5.92 or 5.915 to 5.916 after M2
	5.92 or 5.915 to 5.916	B1	
	(c) 58.7 or $58.73[\ldots]$	2FT	FT for $1 / 2 \times 12.5 \times$ their $10 \times \sin 110$ oe correctly evaluated to 3 or more sig figs M1 for $1 / 2 \times 12.5 \times$ their $10 \times \sin 110$ oe or $1 / 2 \times 4 \times 3.2 \times \sin 110 \times(12.5 / 4)^{2}$
			After $\mathbf{0}$ scored and $15.6 \ldots$ in (a)(ii)(a), allow $\mathbf{S C} 1$ for $1 / 2 \times 4 \times 3.2 \times \sin 110 \times(12.5 / 3.2)^{2}$
(b)	7.62 or 7.623 to 7.624	5	B4 for $37.6[2 \ldots]$ or 37.63
			M2 for $[A B=] \frac{30}{\tan 31}$ or $30 \times \tan 59$ oe or $\mathbf{M 1}$ for $\tan 31=\frac{30}{A B}$ or $\tan 59=\frac{A B}{30}$ oe
			And M2 for $[B D=]$ their $A B \times \tan 37$ oe or
			M1 for $\tan 37=\frac{B D}{\text { their } A B}$ oe

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	41

Qu	Answers	Mark	Part Marks
8 (a) (b) (i) (ii) (c)	$\begin{aligned} & 2 \mathbf{c}+3 \mathbf{b} \\ & 3 \mathbf{c}-6 \mathbf{a} \text { or } 3(\mathbf{c}-2 \mathbf{a}) \\ & 2 \mathbf{c}-4 \mathbf{a} \text { or } 2(\mathbf{c}-2 \mathbf{a}) \\ & P Q=\frac{2}{3} A C \text { oe } \end{aligned}$ and $P Q \text { is parallel to } A C$	1 2 $2 \mathrm{FT}$	M1 for $\overrightarrow{O Q}$ recognised as pos vector. M1 for any valid route from P to Q e.g. $\quad-(3 b-2 a)-6 a+$ their $\overrightarrow{O Q}$ or $\overrightarrow{P Q}=\overrightarrow{P A}+\overrightarrow{A O}+\overrightarrow{O Q}$ or $\overrightarrow{P Q}=\overrightarrow{P B}+\overrightarrow{B Q}$ STRICT FT dep on $\overrightarrow{P Q}=k \overrightarrow{A C}$ from (b)(i) and (b)(ii) B1FT for each statement After $\mathbf{0}$ scored and $\overrightarrow{P Q}=k \overrightarrow{A C}$ in (b)(i) and (ii), allow SC1FT for correct statement, e.g. $P Q$ is not parallel to AC
(a) (b) (c) (i) (ii) (iii)	36, 9, 45 $8 n+4$ oe $(n-1)^{2}$ oe 19 $\frac{1}{3}+p+q=12$ and no errors seen $\frac{1}{3} \times 8+4 p+2 q=12+21$ $[p=] \frac{7}{2}$ oe $[q=] \frac{49}{6}$ oe	2 2 2 1 2 2	B1 for two correct values M1 for $8 n+k$, for any k M1 for a quadratic expression of form $n^{2}[+a n+b]$ oe M1 for $(n+1)(n+5)=480$ or better or 20×24 seen Accept $p+q=12-\frac{1}{3}$ after $\frac{1}{3}\left[1^{3}\right]+p\left[1^{2}\right]+q[1]$ shown M1 for $12+21$ seen or 33 seen M1 for correct multiplication and subtraction or substitution using the correct given equations B1 for $[p=] \frac{7}{2}$ or $[q=] \frac{49}{6}$ After 0 scored, SC1 for 2 values satisfying one of the original correct given equations

