MARK SCHEME for the October／November 2015 series

0580 MATHEMATICS

0580／21
Paper 2 （Extended），maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	21

Abbreviations

cao dep	correct answer only dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part Marks
1	[+]17	1	
2		1	
3	Triangle $(3,-2),(4,-2)$, (4, -1)	2	B1 for movement 2 right or 3 down
4	628	2	$\text { M1 for } \frac{785}{1+4}[\times 4]$
5	7 nfww	2	M1 for 7.5×8 or for $(7+8+8+y+6+9+10+5) \div 8=7.5$ or better oe
6	$\frac{\sqrt{4} \times 30}{9-3}$ 10 nfww	M1 A1	Allow one error and 2 for $\sqrt{4}$ and 6 for $9-3$
7	18	2	M1 for $36=2 \times 2 \times 3 \times 3$ soi or $90=2 \times 3 \times 3 \times 5$ soi or listing the correct factors of 36 and 90 showing a minimum of $2,3,6,9$ and 18
8 (a) (b)	90 $8.29 \text { or } 8.289 \ldots \text { to } 8.29$	1 2	M1 for $\frac{O P}{11}=\tan 37^{\circ}$ oe

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	21

$9 \quad$ (a) (b)	$(a+3 c)(x+y)$ final answer $3(a-2 b)(a+2 b)$ final answer	2 3	B1 for $a(x+y)+3 c(x+y)$ or $x(a+3 c)+y(a+3 c)$ B2 for $3(a-2 b)(a+2 b)$ seen and then spoiled or $(3 a-6 b)(a+2 b)$ or $(a-2 b)(3 a+6 b)$ or $(a-2 b)(a+2 b)$ or B1 for $3\left(a^{2}-4 b^{2}\right)$
10	$\frac{14}{90}$ oe must be fraction	2	M1 for 15.5-1.5 oe or B1 for $\frac{k}{90}$
11	31.4 or 31.36 to 31.37	3	M2 for $\left[\frac{2}{2} \times\right] 6.1 \times \pi+2 \times 6.1 \mathrm{oe}$ or B2 for 19.16 to 19.17 or 19.2 or M1 for $6.1 \times \pi$ or for $12.2 \times \pi$
12	81	3	M1 for $V=k(r+1)^{3}$ and $\mathbf{A 1}$ for $k=3$ or M2 for $\frac{V}{24}=\frac{3^{3}}{2^{3}}$ oe
13	$\left[\pm \pm \sqrt{\frac{y-b}{a}}\right.$ oe final answer	3	M1 for correctly subtracting to isolate term in x^{2} M1 for correct division M1 for the final stage of correctly finding the square root
14	19 nfww	4	B3 19.3 or 19.28 to 19.29 or M2 for $\frac{300 \times 60^{2}}{56 \times 1000}$ oe or M1 for distance divided by speed $\text { e.g. their } 300 \div \text { their } 56 \text { or } \frac{56 \times 1000}{60^{2}}$ If $\mathbf{B} \mathbf{0}$ then $\mathbf{B} \mathbf{1}$ for seeing their answer in decimal form correctly written to the nearest integer

15	$\frac{x+4}{x+1}$ final answer	4	B1 for $(x-4)(x+4)$ and B2 for $(x-4)(x+1)$ or SC1 for $(x+a)(x+b)$ where $a+b=-3$ or $a b=-4$
16	198	4	B3 for 197.7.... or answer 198.00 or M2 for $1800 \times\left(1+\frac{1.5}{100}\right)^{7}-1800$ or B2 for answer 1998 or M1 for $1800 \times\left(1+\frac{1.5}{100}\right)^{7}$ If $\mathbf{B} 0$ then $\mathbf{B 1}$ for seeing their answer in decimal form correctly written to the nearest integer
17 (a) (b)	Enlargement $\frac{1}{2}$ origin oe $\left(\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$ oe		correct or FT their (a) allow for 2 marks $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$ where $k=$ their scale factor in (a) B1 for one correct row or correct column or $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$ $(k \neq 0 \text { or } 1)$
18 (a) (b) (c)	$\left(\begin{array}{ll} -9 & -5 \\ -7 & -5 \end{array}\right)$ $\frac{1}{10}\left(\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right) \mathrm{oe}$ Not the same order oe	2	B1 for two correct elements B1 for $\frac{1}{10}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ or $k\left(\begin{array}{cc}4 & 2 \\ -3 & 1\end{array}\right)$ seen or det $=10$ soi

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	21

19	281 or 280.8 to 280.9 ...	5	M2 for $\frac{25}{360} \times 2 \times \pi \times 15 \times 5$ oe or M1 for $\frac{25}{360} \times 2 \times \pi \times 15$ oe and M1 for $[2] \times \frac{25}{360} \times \pi \times 15^{2}$ oe and B1 for $15 \times 5[\times 2$]
20 (a) (b)	$0.16 \text { oe }$ $0.58 \text { oe }$	2 4	M1 for 0.4×0.4 If zero scored SC1 for fully correct evaluated method involving a without replacement method M3 for $1-\left(0.4^{2}+0.5^{2}+0.1^{2}\right)$ oe or M2 for $0.4^{2}+0.5^{2}+0.1^{2}$ ALT method M3 for $0.4 \times(0.5+0.1)+0.5 \times(0.4+0.1)+0.1 \times(0.4+0.5) \text { oe }$ or M2 for addition of any three of: $0.4 \times 0.5,0.4 \times 0.1,0.5 \times 0.4,0.5 \times 0.1,0.1 \times 0.4$ and 0.1×0.5 or M1 for addition of any two of: $0.4 \times 0.5,0.4 \times 0.1,0.5 \times 0.4,0.5 \times 0.1,0.1 \times 0.4$ and 0.1×0.5 If zero scored SC2 for fully correct evaluated method involving a without replacement method
21 (a) (b) (c)	512 $6 x-2$ or $2(3 x-1)$ final answer $\frac{1}{2}(x-1)$ oe	2	B1 for $[\mathrm{f}(2)=] 8$ or M1 for $\left(x^{3}\right)^{3}$ or better B1 for $3(2 x+1)-5$ or better M1 for correct first step eg $y-1=2 x$ or $\frac{y}{2}=x+\frac{1}{2}$ or $x=2 y+1$ or better

