MARK SCHEME for the October／November 2015 series

0580 MATHEMATICS

0580／41
Paper 4 （Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Question	Answer	Mark	Part marks
1 (a)	6	3	B2 for $5 \frac{1}{4}$ or 5.25 shown in working isw or M1 for $\frac{3}{4} \times 7$ soi by answer 5
(b)	21.45 cao final answer	2	M1 for 17.16×0.25 or 17.16×1.25
(c)	16.5[0] nfww	3	M2 for $17.16 \div 1.04$ oe or M1 for 17.16 associated with 104[\%] oe isw
(d)	1.34 cao final answer	2	M1 for $13.32 \div 0.72$ soi by $18.5[0]$ or for any correct complete longer method If zero scored, SC1 for 0.96 [euros] seen
(e) (i)	750	1	
(ii)	4.7 cao	3	B2 for 4.658 to 4.66 or M2 for $\sqrt{\text { their } \mathbf{(e)}) \mathbf{(i)} \div 11 \pi}$ or M1 for $11 \pi r^{2}=$ their $(\mathbf{e})(\mathbf{i})$
(iii)	6	2	M1 for 2^{3} or $\frac{1}{2^{3}}$ oe seen or for $\pi \times(2 \times \text { their }(\mathrm{e})(\mathbf{i i}))^{2} \times 22$ If zero scored, SC1 for answer 6000
(f)	8950	1	
(g)	210	2	M1 for 0.07×3000
(h)	160000	3	M2 for $2 \times 60 \times 100^{3} \div 750$ oe or M1 for figs 16 as answer or 100^{3} seen
2 (a)	1.62 or 1.62...	1	
(b) (i)	7	1	
(ii)	4	1	
(iii)	7	1	
(iv)	$\frac{1}{3} \text { oe }$	1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
(c) (i)	0.25 oe and 1	2	B1 for each
(ii)	Correct curve	4	B3FT for 6 or 7 correct plots or B2FT for 4 or 5 correct plots or B1FT for 2 or 3 correct plots
(iii)	2.3	1FT	Correct or FT where $y=5$ on their graph
(iv)	$y=3 x-1$ oe 3 term equation	3	B2 for $3 x-1$ or $y=3 x[+c]$ oe or for $m=3$ and $c=-1$ or M1 for [gradient $=] \frac{8-2}{3-1}$ oe soi by $3 x$ and M1 for substitution of $(1,2)$ or $(3,8)$ into their $y=m x+c$
(v)	-1.7 to -1.5 and 2	2	B1 for either or M1 for $y=x+2$ seen or drawn
3 (a) (i)	25.4 or 25.35... nfww	5	M2 for $\sqrt{60^{2}-50^{2}}$ oe soi by 33.1 to 33.2 or M1 for $T B^{2}+50^{2}=60^{2}$ oe and M2 for $\tan =\frac{\text { theirTB }}{70}$ oe or B1 for recognising angle $T C B$ as required angle
(ii)	109 or 109.0 to 109.1	4	M2 for $50^{2}+70^{2}-2 \times 50 \times 70 \times \cos 130$ M1 for implicit cos rule A1 for 11899 to 11900
(iii)	1340 or 1340.0 to 1341	2	M1 for $\frac{1}{2} \times 50 \times 70 \times \sin 130$ oe
(b)	51.5 or 51.50 to 51.51	4	$\begin{aligned} & \text { M3 for }[X Y]=\sqrt{45^{2}+22^{2}+12^{2}} \\ & \text { or M2 for }\left[X Y^{2}=\right] 45^{2}+22^{2}+12^{2} \text { soi by } \\ & 2653 \\ & \text { or M1 for } 45^{2}+22^{2} \text { oe } \\ & \quad \text { or } 45^{2}+12^{2} \text { oe } \\ & \quad \text { or } 12^{2}+22^{2} \text { oe } \end{aligned}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
4 (a) (i) (ii) (b)	$\begin{aligned} & x \geqslant 5 \text { oe } \\ & y \leqslant 8 \text { oe } \\ & x+y \leqslant 15 \text { oe } \\ & y>x \text { oe or } y \geqslant x+1 \end{aligned}$ $\begin{aligned} & x=5 \text { ruled } \\ & y=8 \text { ruled } \\ & x+y=15 \text { ruled } \\ & y=x \text { ruled broken line } \end{aligned}$ Correct region indicated	1 1 1 1dep	Condone $5 \leqslant x \leqslant 15$ Condone $0<y \leqslant 8$ B1 for each -1 for first occurrence of strict inequalities used in first 3 inequalities Allow $y=x+1$ ruled only after $y \geqslant x+1 \text { in (a)(i) }$ Dependent on all marks for lines earned Accept R written in correct quadrilateral or any other unambiguous indication or accept in triangle if $y=x+1$ used and all marks for lines earned B1 for $(7,8)$ chosen or M1 for a calculation shown of the form $6 x+4.5 y$ where (x, y) is clearly in their region and both x and y are integers
5 (a) (b) (c)	37 or [angle] $B A D$ [Angles in] same segment [are equal] 74 or 2 [\times angle] $B A D$ or 2 [\times angle] $B E D$ Angle at centre is twice angle at circumference 143 or $180-$ [angle] $B A D$ or 180 - [angle] $B E D$ [Opposite angles of] cyclic quad [are supplementary]	1 1dep 1 1dep 1 1dep	Dependent on 37 or [angle] BAD Dependent on 2×37 or $2[\times$ angle] $B A D$ or 2 [\times angle] $B E D$ Must use the terms circumference, centre and angle Dependent on 180-37 or 180 - [angle] BAD or 180 - [angle] $B E D$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answers \& Mark \& Part Marks

\hline (d)

(e) \& \begin{tabular}{l}
Correct ruled perpendicular bisector of $C B$ with correct arcs Correct two pairs of arcs

Correct ruled bisector of angle $A C B$ with correct pair of arcs

Ruled line parallel to $C B$ in triangle

1.3 to 1.7 cm from $C B$ in triangle

Correct region indicated

40

 \&

2

1

1

1dep

2

 \&

B1 for correct perpendicular bisector without/wrong arcs

B1 for correct bisector of angle $A C B$ without/wrong arcs

Provided this line is not the perpendicular bisector of $A C$

Dependent on at least B1,B1,1,1 earned

M1 for 0.4×10^{2} oe
\end{tabular}

\hline | 8 (a) |
| :--- |
| (b) (i) |
| (ii) | \& \[

$$
\begin{aligned}
& (x-5)(x+2) \quad \text { final answer } \\
& x(x+2)+3(x+1)=3 x(x+1) \text { or } \\
& x^{2}+2 x+3 x+3=3 x^{2}+3 x \\
& 0=2 x^{2}-2 x-3 \\
& \frac{[--] 2 \pm \sqrt{([-] 2)^{2}-4(2)(-3)}}{2(2)} \\
& \text { or } 0.5 \pm \sqrt{1.75}
\end{aligned}
$$
\]

\[
-0.823 and 1.823 final answer

\] \& | M2 |
| :--- |
| A1 |
| B2 | \& | B1 for $(x-5)(x+2)$ seen and then spoiled or M1 for $(x+a)(x+b)$ |
| :--- |
| where $a+b=-3$ or $a b=-10[a, b$ integers] |
| M1 for $x(x+2)+3(x+1)$ or better seen Allow recovery of omitted brackets for M marks but not A mark |
| Brackets expanded correctly and/or no errors or omission of brackets seen |
| B1 for $\sqrt{([-] 2)^{2}-4(2)(-3)}$ or $\sqrt{28}$ or $\sqrt{1.75}$ oe in completion of square |
| and $\mathbf{B 1}$ for in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$, |
| $p=--2$ and $r=2(2)$ or better or $(x-0.5)^{2}$ oe in completion of square |
| If B0B0 for answers, |
| SC1 for -0.82 or $-0.822 \ldots$ and 1.82 or 1.822 .. as final answers or -0.823 and 1.823 seen or -1.823 and 0.823 as final answers |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
(c)	$\frac{x^{2}+3 x+3}{(x+2)(x+1)}$ or $\frac{x^{2}+3 x+3}{x^{2}+3 x+2}$ final answer nfww	4	M1 for $(2 x+3)(x+1)-x(x+2)$ oe isw B1 for common denominator $=(x+2)(x+1)$ isw or $x^{2}+3 x+2$ isw B1 for $2 x^{2}+2 x+3 x+3$ or better or $-x^{2}-2 x$ or $\quad x^{2}+3 x+3$
9 (a) (i) (ii) (b) (i) (ii) (c)	16 n^{2} 43 7 $a=\frac{5}{2}$ oe, $b=\frac{5}{6}$ oe with supporting working	1	M1 for any correct substitution eg $\frac{2}{3}(2)^{3}+2^{2} a+2 b$ A1 for one of eg $\frac{2}{3}+a+b=4$ or better eg $\frac{16}{3}+4 a+2 b=17$ or better eg $\frac{54}{3}+9 a+3 b=43$ or better A1 for another of eg $\frac{2}{3}+a+b=4$ or better eg $\frac{16}{3}+4 a+2 b=17$ or better eg $\frac{54}{3}+9 a+3 b=43$ or better M1 for correctly eliminating one variable from two of their equations in a and b A1 for $a=\frac{5}{2}$ oe A1 for $b=\frac{5}{6}$ oe After zero scored, SC2 for 2 correct answers without supporting working or SC1 for 2 of 17, 43, 86, 150, 239 seen

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
10 (a) (b)	$\begin{aligned} & \mathbf{b}-\mathbf{a} \text { or }-\mathbf{a}+\mathbf{b} \\ & \frac{4}{5} \mathbf{b}-\frac{3}{10} \mathbf{a} \text { or } \frac{1}{10}(8 \mathbf{b}-3 \mathbf{a}) \end{aligned}$	4	B3 for correct unsimplified expression in \mathbf{a} and \mathbf{b} or M1 for $\overrightarrow{X A}+\overrightarrow{A C}+\overrightarrow{C M}$ or $\overrightarrow{X B}+\overrightarrow{B M}$ or $-\frac{1}{5}($ their $(\mathbf{a}))+\mathbf{b}-\frac{1}{2} \mathbf{a}$ or $\frac{4}{5}($ their $(\mathbf{a}))+\frac{1}{2} \mathbf{a}$ and M1 indep for $\pm \frac{1}{5}$ oe or $\pm \frac{4}{5}$ oe used After zero scored, SC2 for answer $\frac{1}{4}(3 \mathbf{b}-\mathbf{a})$ or $\frac{3}{4} \mathbf{b}-\frac{1}{4} \mathbf{a}$

