MARK SCHEME for the October／November 2015 series

0580 MATHEMATICS

0580／43
Paper 4 （Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
(i) (ii) (iii) (b)	$\begin{aligned} & 3.9[0] \\ & \frac{13}{18} \text { cao } \\ & 24 \\ & 109 \text { cao } \end{aligned}$	3 3	M1 for $2.6 \div 2$ B1 for any correct unsimplified fraction M2 for $9 \div 0.375$ oe or M1 for associating 9 with (100-62.5)\% B2 for 108.5 to 108.6 or M1 for $250 \times\left(1-\frac{8}{100}\right)^{10}$ oe
(a) (i) (ii) (b) (c) (i) (ii)	$\begin{aligned} & \text { Image at }(-2,5),(1,5),(1,7) \\ & \text { Image at }(2,-3),(5,-3),(5,-5) \\ & \text { Rotation } \\ & 180 \text { oe } \\ & (-1,0) \\ & \text { Reflection } \\ & y=-x \text { oe } \\ & \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right) \end{aligned}$		SC1 for translation $\binom{-4}{k}$ or $\binom{k}{4}$ or 3 correct vertices plotted but not joined SC1 for a reflection in a horizontal line or in the line $x=-1$ or 3 correct vertices plotted but not joined Alt Enlargement SF-1 $(-1,0)$ Not as column vector SC1 for a correct row or column

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

3 (a)	43200	3	$\begin{aligned} & \text { M2 for } 0.5 \times(35+25) \times 12 \times 120 \text { oe } \\ & \text { or } \\ & \text { M1 for } 0.5 \times(35+25) \times 12 \text { oe } \end{aligned}$
(b) (i)	$0.5 \times(25+30) \times 6 \times 120[=19800]$	M2	Dep on a valid method for obtaining the width of 30 cm B1 for $0.5 \times(25+35)$ oe
(ii)	45.8 or 45.83...	1FT	$\mathbf{F T} \text { for } \frac{19800}{\text { their } \mathbf{(a)}} \times 100$
(c)	1 hr 39 min	4	B3 for $1.65[\mathrm{~h}]$ or 99 mins or $\frac{33}{20}$ or M2 for $\frac{19800}{12 \times 1000}$ oe or M1 for $\frac{19800}{12}$ or $\frac{19800}{1000}$ or 12×1000
			If zero scored then SC1 for figs 165 and B1 for converting their time (in hours) into hours and minutes
(d)	12.8 or 12.80 to 12.81	3	M2 for $\sqrt[3]{\frac{19800}{3 \pi}}$ or M1 for $\pi r^{2} 3 r=19800$
(e)	21[.0]	2	M1 for $\frac{19800}{1000}+1.2$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

(c)	$25 \mathrm{nfww}$	4	M1 for $\frac{4[.] 80}{w-1}$ or $\frac{7[.] 80}{2 w-11}$ M1 for $\frac{4[.] 80}{w-1}=\frac{7[.] 80}{2 w-11}$ oe M1 for $480(2 w-11)=780(w-1)$ oe or ALT M1 for $n(w-1)=4[]$.80 or $n(2 w-11)=7[]$. M1 for $2 w n-11 n=7[]$. $2 w n-2 n=9[.] 60 \text { oe }$ M1 for $9 n=180$ oe or better or ALT M1 for $n(w-1)=4[]$.80 or $n(2 w-11)=7[]$. M1 for $\frac{4[.] 80+n}{n}=\frac{7[\cdot] 80+11 n}{2 n}$ M1 for $9 n=180$ oe or better
(d) (i) (ii) (iii)	$\frac{1}{2} u(3 u-2)=2.5$ One further correct step leading to $3 u^{2}-2 u-5=0$ with no errors $(3 u-5)(u+1)$ 29.1 or $29.05 \ldots$	M1 A1 2	First step must involve $\frac{1}{2} u(3 u-2)$ SC1 for $(3 u+a)(u+b)$ where $a b=-5$ or $a+3 b=-2$ [a, b integers] M2 for $\tan =\frac{\text { their } \frac{5}{3}}{3 \times \text { their } \frac{5}{3}-2}$ or M1 for substituting their positive value of u into [u and] $3 u-2$
(a) (i) (ii) (iii) (b) (i) (ii) (iii) (iv)	Angle A is common to both triangles oe $A D B=A B C$ Third angle of triangles equal oe Similar 8.25 38 38 78 26	1dep 1 2 1 1 1	Accept $D A B=C A B$ oe Dep on previous mark M1 for $\frac{16}{12}=\frac{11}{B D}$ oe or better

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

(c)	36 nfww	5	B4 for an equation in m that simplifies to $5 m=180$ or B1 for each of 3 of the listed angles expressed in terms of m, in it's simplest form, stated or labelled on diagram Angle $P Q O=m$ Angle $Q O R=m$ Angle $O Q R=2 \mathrm{~m}$ Angle $P Q R=3 m$ or $180-2 m$ or $90+\frac{m}{2}$ Angle $P O R=180-m$ or $4 m$ or $360-6 m$ Reflex angle $P O R=360-4 m$ or $6 m$ or $180+m$
9 (a)	8	1	
(b)	3	2	B1 for $[\mathrm{g}(0.5)=] 2$ soi or M1 for $2\left(\frac{1}{x}\right)-1$ or better
(c)	$\frac{x+1}{2}$ final answer	2	M1 for $x=2 y-1$ or $y+1=2 x$ or better or $\frac{y}{2}=x-\frac{1}{2}$
(d)	$4 x-3$	2	M1 for $2(2 x-1)-1$
(e)	$4 x^{2}-4 x+7$	2	B1 for $\left[(2 x-1)^{2}\right]=4 x^{2}-2 x-2 x+1$
(f)	x	1	
(g)	$\mathrm{g}^{-1}(x)=\mathrm{g}(x)$	1	
(h)	$\mathrm{fh}(x)$	1	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	$\mathbf{0 5 8 0}$	43

10	A $-13,-20$	1	
	$-7 n+22$ oe	2	SC1 for $-7 n+k$ or $k n+22$ oe
	B $\frac{9}{22}, \frac{10}{23}$	1	
	$\frac{n+4}{n+17} \text { oe }$	2	B1 for $n+4$ oe or $n+17$ oe seen, but not in wrong position
	C 26,37	1	
	$n^{2}+1 \mathrm{oe}$	1	
	D 162,486	1	
	$2 \times 3{ }^{n-1}$ oe	2	SC1 for $k \times 3^{n+p}$ [k, p integers] Accept $2 \times \frac{3^{n}}{3}$

