Cambridge International Examinations<br>Cambridge International General Certificate of Secondary Education

## MATHEMATICS

0580/22
Paper 2 (Extended)
October/November 2016
MARK SCHEME
Maximum Mark: 70


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 22 |

## Abbreviations

| cao | correct answer only |
| :--- | :--- |
| dep | dependent |
| FT | follow through after error |
| isw | ignore subsequent working |
| oe | or equivalent |
| SC | Special Case |
| nfww | not from wrong working <br> soi |
| seen or implied |  |


| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| 1 (a) <br> (b) | $\begin{aligned} & 15000 \text { cao } \\ & 1.5 \times 10^{4} \end{aligned}$ | $1$ <br> 1FT | FT their (a) |
| 2 | 25 | 2 | B1 for 67 or 113 seen once in correct position <br> or M1 for $a+42=67$ <br> or $a+42+113=180$ or better |
| 3 | 21 | 2 | M1 for $k-8=13$ or $6 k-48=78$ or better |
| 4 | 58 | 2 | M1 for $\frac{(13+16) \times 4}{2}$ or $4 \times 13+\frac{1}{2} \times 4 \times 3$ oe |
| 5 | $9 y^{3}$ final answer | 2 | B1 for $9 y^{k}, 9 \times y^{3}$ or $k y^{3}(k \neq 0)$ as final answer |
| 6 | 72.25 cao | 2 | M1 for $8+0.5$ or better seen |
| 7 | 1,2,3 | 3 | B2 for $t<4$ <br> or <br> M1 for $2+6>3 t-t$ oe or better <br> If zero scored, SC1 for answer 0, 1, 2, 3 or 1, 2, 3, 4 |
| 8 | correctly eliminating one variable $\begin{aligned} & {[x=] 9} \\ & {[y=] 3.5} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | If zero scored, SC1 for 2 values satisfying one of the original equations <br> SC1 if no working shown but 2 correct answers given |
| 9 | 234 or 234.3 to 234.4 | 3 | M2 for $[$ dist $=] \frac{300}{\tan 52}$ oe <br> or M1 for correct implicit trig statement allow M1 if they use their 52 or their 38 provided it is marked on the diagram or B1 for 52 or 38 correctly placed If zero scored, SC1 for final answer 384 |


| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 22 |


| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| 10 | 46.3 or 46.29 to 46.30 | 3 | M2 for $53 \times \sqrt[3]{\frac{20}{30}}$ oe or M1 for $\sqrt[3]{\frac{20}{30}}$ or $\sqrt[3]{\frac{30}{20}}$ or $\left(\frac{53}{x}\right)^{3}=\frac{30}{20}$ or better |
| 11 (a) <br> (b) | Accurate angle bisector with correct arcs <br> Equidistant (oe) from $A B$ and $A C$ | 1 | B1 for accurate angle bisector or correct arcs with no/wrong line |
| 12 (a) <br> (b) | $\begin{array}{\|l} 38 \\ 12: 7 \end{array}$ | $2$ | M1 for $57 \div(2+1)$ or better <br> M1FT for their $38-2$ and their $19+2$ seen dep on sum $=57$ <br> If M0 SC1 for answer $7: 12$ |
| 13 (a) <br> (b) <br> (c) | $m\left(m^{2}+1\right)$ final answer $(5-y)(5+y)$ final answer $(x-4)(x+7)$ final answer | 1 <br> 2 | B1 for $(x-4)(x+7)$ seen then spoiled or M1 for $(x+a)(x+b)$ where $a b=-28$ or $a+b=3$ <br> or for $x(x+7)-4(x+7)$ or $x(x-4)+7(x-4)$ |
| 14 | Common denominator 24 <br> Two correct from $\frac{18}{24}, \frac{16}{24}$ and $\frac{3}{24}$ oe <br> $1 \frac{7}{24}$ cao | B1 <br> M1 <br> A2 | accept $k \times 24$ <br> accept $\frac{18 k}{24 k}, \frac{16 k}{24 k}$ and $\frac{3 k}{24 k}$ <br> A1 for $\frac{31}{24}$ or $\frac{31 k}{24 k}$ or $1 \frac{7 k}{24 k}$ |
| 15 (a) (i) <br> (ii) <br> (b) <br> (c) | 9 <br> 12 <br> $\frac{5}{14}$ | 1 <br> 1 <br> 1 <br> 1 |  |


| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 22 |


| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| 16 (a) <br> (b) | $\binom{-7}{3}$ $7.81 \text { or } 7.810 \ldots$ | $2$ | M1 for $\overrightarrow{C B}=\binom{-2}{-3}$ <br> or for correct route allow e.g. $B A-B C, C B+B A$ <br> M1 for $\sqrt{(-5)^{2}+6^{2}}$ |
| 17 | 1024 cao | 5 | B4 for 1023 to 1024.0... or 1020 or <br> M3 for $\frac{125}{360} \times \pi \times 48^{2}-\frac{125}{360} \times \pi \times 40^{2}+32 \times 8$ <br> or <br> M1 for $\frac{125}{360} \times \pi \times 48^{2}$ or $\frac{125}{360} \times \pi \times 40^{2}$ <br> and M1 for $32 \times 8+k \pi$ <br> If B0 scored B1 for their more accurate decimal answer rounded correctly to an integer |
| 18 (a) <br> (b) | Enlargement $\text { [s.f.] } \frac{1}{2}$ <br> [centre] ( $-1,3$ ) <br> Triangle at $(3,-1)(5,-1)(5,-5)$ |  | M2 for 2 correct vertices on grid or in working or M1 for identifying matrix as a reflection in the $x$-axis or for $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{lll}3 & 5 & 5 \\ 1 & 1 & 5\end{array}\right)$ oe |
| 19 (a) <br> (b) | $\frac{1}{7}\left(\begin{array}{ll}-4 & 3 \\ -5 & 2\end{array}\right)$ oe isw 6 nfww | $2$ | B1 for $k\left(\begin{array}{ll}-4 & 3 \\ -5 & 2\end{array}\right)$ or $\operatorname{det}=7$ soi <br> M3 for $(w-6)^{2}=0$ <br> or M2 for $w^{2}-12 w+36$ [ $=0$ ] <br> or M1 for $w(w-12)-4 \times(-9)[=0]$ oe <br> or <br> clear attempt at determinant $=0$ oe |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - October/November 2016 | 0580 | 22 |


| Question | Answer | Mark | Part marks |
| :---: | :---: | :---: | :---: |
| 20 (a) <br> (b) <br> (c) | $\begin{aligned} & (7,1) \\ & -1.25 \text { or }-\frac{5}{4} \text { or }-1 \frac{1}{4} \\ & y=\frac{4}{5} x+2 \text { oe } \end{aligned}$ | 2 <br> 3 | M1 for rise/run <br> B2 for $\frac{4}{5} x+2$ or $y=\frac{-1}{t h e i r(\mathbf{b})} x+2$ oe <br> or M1 for $-\frac{1}{\text { their }(\mathbf{b})}$ oe <br> or B1 for $\frac{4}{5} x$ seen or $[y=] m x+2 \quad(m \neq 0)$ |


[^0]:    $®$ IGCSE is the registered trademark of Cambridge International Examinations.

