Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

MATHEMATICS
0580/41
Paper 4 Paper 4 (Extended)
October/November 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - October/November 2016 | 0580 | 41 |

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part marks \\
\hline \& \begin{tabular}{l}
15 to 15.2 \\
10.8 to 11 \\
9 to 9.2 \\
10 \\
24 \\
16.75 nfww \\
Fully correct histogram
\end{tabular} \& \begin{tabular}{l}
1 \\
1FT \\
1 \\
2 \\
4
\end{tabular} \& \begin{tabular}{l}
FT 20 - their (a)(ii) \\
B1 for 176 written \\
isw attempted time conversion after correct answer \\
M1 for \(5,12.5,17.5,25,45\) soi \\
M1 for \(\Sigma f x\) \\
M1 dep for their \(\Sigma f x \div 200\) \\
B1 for each correct block \\
If zero scored, SC1 for frequency densities of \(9.6,12,2.6\) and 0.6 seen
\end{tabular} \\
\hline 3 (a) (i) \& \begin{tabular}{l}
\[
51.7 \text { or } 51.69 \text { to } 51.70 \ldots
\] \\
1.96 or 1.957 to \(1.958 \ldots\)
\end{tabular} \& 4

4 \& | M3 for $\left(2 \times \frac{2}{3} \times \pi \times 13^{3}+\pi \times 13^{2} \times 25\right) \times 2.3[\div 1000] \text { oe }$ or SC3 for figs 517 or figs 5169 to $5170 \ldots$ or M2 for $\left(2 \times \frac{2}{3} \times \pi \times 13^{3}+\pi \times 13^{2} \times 25\right)$ oe OR |
| :--- |
| M1 for $2 \times \frac{2}{3} \times \pi \times 13^{3}$ seen or $\pi \times 13^{2} \times 25$ seen |
| M1indep for their volume $\times 2.3 \div 1000$ |
| M3 for $\left(2 \times 2 \times \pi \times 13^{2}+\pi \times 2 \times 13 \times 25\right)\left[\div 100^{2}\right] \times 4.7 \mathrm{oe}$ or SC3 for figs 196 or figs 1957 to $1958 \ldots$ |
| M2 for $\left(2 \times 2 \times \pi \times 13^{2}+\pi \times 2 \times 13 \times 25\right)$ oe OR |
| M1 for $2 \times 2 \times \pi \times 13^{2}$ seen or $\pi \times 2 \times 13 \times 25$ seen |
| M1indep for their area divided by 100^{2} soi |

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

Question	Answer	Mark	Part marks
(b) (c)	$6.2[0]$ or 6.203 to 6.204 286 or $285.7 \ldots$	3 3	M2 for $x^{3}=\frac{500}{\frac{2}{3} \pi}$ oe or better or M1 for $\frac{1}{3} \times \pi \times x^{2} \times 2 x=500$ oe M2 for $\frac{180}{A}=\left(\frac{180}{360}\right)^{\frac{2}{3}}$ oe or M1 for $\left(\sqrt[3]{\frac{360}{180}}\right)^{[2]}$ oe or $\left(\sqrt[3]{\frac{180}{360}}\right)^{[2]}$ oe seen or $\frac{A^{3}}{180^{3}}=\frac{360^{2}}{180^{2}}$
$4 \quad$ (a) (b)	$\begin{aligned} & 0.92, \ldots ., \ldots ., 0.5,-1, \ldots ., \ldots .,-1 \\ & 0.5, \ldots ., \ldots ., 0.92 \end{aligned}$ Fully correct graph	3 5	B2 for 4 or 5 correct or B1 for 2 or 3 correct B4 for correct graph but branches joined OR B3FT for 11 or 12 correct points or B2FT for 9 or 10 correct points or B1FT for 7 or 8 correct points B1indep for a branch on each side of the y-axis, without touching it
(c) (i)	Correct ruled line through $(-2,1)$ and (2, -3)	2	B1 for straight line with gradient -1 or cutting y-axis at -1 or correct line but freehand or short correct ruled line
(ii) (iii)	$0.7 \text { to } 0.95$ $[p=] 2 \text { and }[q=]-2$		B2 for $x^{3}+2 x^{2}-2=0$ oe or B1 for $x^{2}-2=-x^{3}-x^{2}$ oe or better or $1+1-\frac{2}{x^{2}}+x[=0]$ or better
(d) (i) (ii)	$(1.3 \text { to } 1.6,0)$ Ruled line from $(0,-2)$ to intersection of their graph with positive x-axis	1 1FT	
(iii)	$\begin{aligned} & \text { Tangent }[\text { to curve }] \\ & A \text { or }(1.3 \text { to } 1.6,0) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii) \\
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Image at \((-2,-4),(4,-4),(4,0)\) \\
8.94 or \(8.944 \ldots\) \\
Enlargement \\
[factor] 0.5 oe \\
[centre] \((0,0)\) oe \\
\(\left(\begin{array}{cc}0.5 \& 0 \\ 0 \& 0.5\end{array}\right)\) oe \\
0.25 or \(\frac{1}{4}\)
\end{tabular} \& \begin{tabular}{l}
1 \\
1
1 \\
2FT \\
1FT
\end{tabular} \& \begin{tabular}{l}
SC1 for translation \(\binom{-4}{k}\) or \(\binom{k}{-8}\) \\
M1 for \(\sqrt{(-4)^{2}+(-8)^{2}}\) or \(\sqrt{4^{2}+8^{2}}\) \\
FT their scale factor from (b)(i) dep on enlargement and centre (0,0) \\
B1FT for one row or column \\
Strict FT their matrix but not for identity matrix
\end{tabular} \\
\hline \begin{tabular}{l}
6 (a) \\
(b) \\
(c) \\
(d) \\
(e)
\end{tabular} \& \begin{tabular}{l}
126 or 126.4 to 126.5 \\
99.9 or 99.86 to 99.87 \\
92.6 or 92.58 to 92.59 \\
115.1 or 115.0 to 115.1 \\
19700 or 19708 to 19720
\end{tabular} \& 3
4

2
3

3 \& | M2 for $\sqrt{220^{2}-180^{2}}$ oe or M1 for $B C^{2}+180^{2}=220^{2}$ oe M2 for $180^{2}+170^{2}-2 \times 180 \times 170 \cos 33$ or M1 for $\cos 33=\frac{180^{2}+170^{2}-C D^{2}}{2 \times 180 \times 170}$ A1 for 9970 or 9973 to 9974 |
| :--- |
| M1 for $\frac{\text { dist }}{170}=\sin 33 \mathrm{oe}$ |
| M1 for $\cos =\frac{180}{220}$ oe |
| M1dep for $47+33+$ their angle $B A C$ |
| M1 for $0.5 \times 180 \times 170 \times \sin 33$ oe or $0.5 \times 180 \times$ their (\mathbf{c}) oe M1 for $0.5 \times 180 \times$ their (\mathbf{a}) oe or $0.5 \times 180 \times 220 \times \sin ($ their $B A C)$ oe |

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

Question	Answer	Mark	Part marks
$7 \quad$ (a) (b) (i) (ii) (c)	$0.7,0.1$ oe correctly placed $0.2,0.8$ oe correctly placed 0.44 nfww oe If late at first two stations then certain to be late at station C oe	3 1FT	M2 for 1 -their $0.7 \times$ their 0.8 or for $0.3+$ their $0.7 \times$ their 0.2 oe or M1 for their $0.7 \times$ their 0.8 or for two of $0.3 \times 0.9,0.3 \times$ their 0.1 , their $0.7 \times$ their 0.2 FT $250 \times$ their $(\mathbf{b})(\mathbf{i})$ Indication of certain event (allow 1 or 100% probability or sure) at third station if late at first two stations
8 (a) (b) (i) (ii) (iii) (c)	$\frac{323}{x}+\frac{323}{x+2}=36$ oe three term equation $323(x+2)+323 x=36 x(x+2)$ oe or $\frac{323 x+646+323 x}{x(x+2)}=36 \mathrm{oe}$ $36 x^{2}-574 x-646=0$ $18 x^{2}-287 x-323=0$ 17,19 $(\ldots \ldots .+19)(\ldots \ldots \ldots-17)$ $17,-\frac{19}{18}$ oe 11 cao	B2 M1 A1 1 2 1FT 1	B1 for $\frac{323}{x}$ seen oe or $\frac{323}{x+2}$ seen oe i.e. for clearing the fractions (or all still over common denominator) or reducing the two algebraic fractions to one fraction and expanding the brackets in the numerator answer reached without any omissions or errors with at least one intermediate line with brackets expanded after M1 SC1 for $(\ldots \ldots+a)(\ldots \ldots \ldots+b)$ where a, b are integers and $a b=-323$ or $a+18 b=-287$ FT their (b)(ii)

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

Question	Answer	Mark	Part marks
9 (a) (b) (c) (d) (e) (f) (g)	236 $6 x+1$ final answer $x<3$ oe final answer -2 $\frac{x+2}{3}$ oe final answer $\frac{6 x^{2}-x+3}{2 x+1}$ final answer 9	2 1 2 3	B2 for 243 and 7 or M2 for $3^{2(2)+1}-\left(2\left(3^{[1]}\right)+1\right)$ oe B1 for $\mathrm{h}(5)$ or $\mathrm{f}(3)$ soi or M1 for $3^{2 x+1}-\left(2\left(3^{x}\right)+1\right)$ or better M1 for $3(2 x+1)-2$ M1 for $1+2>3 x-2 x$ or $2 x-3 x>-2-1$ oe M1 for $x=3 y-2$ or $y+2=3 x$ or $\frac{y}{3}=x-\frac{2}{3}$ M1 for $5+(2 x+1)(3 x-2)$ or better isw B1 for common denominator $2 x+1$ isw
10 (a) (b) (c)	115 or 114.5 to 114.6 126 120	4	M2 for $\frac{r^{2}}{\frac{\pi r^{2}}{360}}$ or better or M1 for $\frac{w}{360} \times \pi \times r^{2}=r^{2}$ M2 for $\frac{x}{360} \times 2 \pi r[+2 r]=[2 r+] \frac{7 \pi r}{10}$ or better or M1 for $\frac{x}{360} \times 2 \pi r$ B3 for $\frac{y}{2}=60$ or x (base angle) $=30$ OR M3 for $\cos x$ or $\sin \left(\frac{y}{2}\right)=\frac{\sqrt{3}}{2}$ oe or $\cos y=-\frac{1}{2}$ oe or M2 for $\cos x$ or $\sin \left(\frac{y}{2}\right)=\frac{q \sqrt{3}}{2 q}$ or $[\cos y]=\frac{q^{2}+q^{2}-(q \sqrt{3})^{2}}{2 \times q \times q}$ oe or M1 for $\left[(q \sqrt{3})^{2}=\right] q^{2}+q^{2}-2 \times q \times q \cos y$ oe After M0, SC1 for $\left[h^{2}=\right] q^{2}-\left(\frac{1}{2} q \sqrt{3}\right)^{2}$ or for q replaced by $1,2,4$, etc.

[^0]: ® IGCSE is the registered trademark of Cambridge International Examinations.

