MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/41

Paper 4 (Paper 4 – Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	41

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working

or equivalent Special Case oe

 \mathbf{SC}

not from wrong working nfww

seen or implied soi

Qu	estion	Answers	Mark	Part Marks
1	(a) (i)	$\frac{13}{13+8+3} \times 12000 \text{ with no}$ subsequent errors	1	
	(ii)	4000	1	
	(b)	$2 \times 6500 + 5 \times their(\mathbf{a})(\mathbf{ii}) +$ (12000 - 6500 - their(\mathbf{a})(\mathbf{ii})) or (13 × 2 + 8 × 5 + 3 × 1) × 500	2	B1 for any two of 2×6500 , $5 \times their(a)(ii)$, (12000 - 6500 - their(a)(ii)) seen or $13 \times 2 + 8 \times 5 + 3 \times 1$
	(c)	37 500	3	M2 for $\frac{34500}{100-8} \times 100$ oe or M1 for 34500 associated with $(100-8)\%$
	(d)	$\frac{11}{26}$ cao	2	M1 for any correct simplified version of $\frac{2750}{6500}$
	(e)	89 500	1	
2	(a)	1.5 1.25 -0.75 0.5	4	B1 for each
	(b)	Fully correct curve	5	 B5 for correct curve over full domain or B3 FT for 11 or 12 points or B2 FT for 9 or 10 points or B1 FT for 7 or 8 points and B1 independent for one complete branch on each side of the <i>y</i>-axis and not touching or crossing the <i>y</i>-axis SC4 for correct curve with branches joined

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	41

Question	Answers	Mark	Part Marks
(c)	-1.35 to -1.25	1	
	-0.27 to -0.251	1	
	1.51 to 1.55	1	
(d)	<i>k</i> < 1.2 or 1.15 to 1.25	2	SC1 for 1.15 to 1.25 seen or horizontal line drawn at min point
(e)	tangent ruled at $x = -1$	B1	No daylight at $x = -1$ Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = -1.1$ and -0.9
	-1.7 to -1.3	2	dep on B1 or a close attempt at tangent at $x = -1$
			or M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point. Must see correct or implied calculation from a drawn tangent
3 (a) (i)	image at (1, 4) (1, 5) (2, 5) (4, 4)	2	SC1 for translation by $\begin{pmatrix} -1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 3 \end{pmatrix}$ or 4 correct vertices plotted but not joined
(ii)	image at (-2, -1) (-5, -1) (-2, -2) (-3, -2)	2	SC1 for correct size and orientation, wrong position or 4 correct vertices plotted but not joined
(iii)	image at (2, -1) (2, -2) (3, -2) (5, -1)	3	B2 for 3 correct vertices plotted or if no / wrong plots allow SC2 for 4 correct coordinates in column matrix or shown in working or SC1 for any 3 correct coordinates or M1 for $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 3 & 5 \\ 1 & 2 & 2 & 1 \end{pmatrix}$ oe
(b)	enlargement	B 1	
	[centre] (1, 0)	B 1	not as column vector
	[scale factor] - 3	B 1	
(c)	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	2	B1 for one correct row or column or $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	41

Qu	estion	Answers	Mark	Part Marks
4	(a)	5	1	
	(b)	$C \cap M$ oe	1	Allow e.g. $(B \cap C \cap M) \cup (C \cap M)$
	(c)	3	1	
	(d) (i)	$\frac{8}{30}$ oe	1	0.267 or better
	(ii)	$\frac{14}{30}$ oe	1	0.467 or better
	(e)	$\frac{30}{272}$ oe	3	M2 for $\frac{6}{17} \times \frac{5}{16}$
				or M1 for $\frac{6}{17}$ seen 0.110[2] or better
5	(a) (i)	10.6 or 10.59	2	M1 for $\tan = \frac{55}{294}$ oe
	(ii)	175 or 174.9[] to 175.[1]	4	M2 for $[adj =] \frac{55}{\tan 24.8}$ oe
	(b) (i)	4.9 or 4.89 to 4.9	4	or M1 for implicit version and M1 dep on at least M1 for 294 – <i>their</i> adj M3 for $\sqrt{4^2 + (\frac{1}{2}\sqrt{4.8^2 + 3^2})^2}$ or M2 for $\frac{1}{2}\sqrt{4.8^2 + 3^2}$ or M1 for $\sqrt{4.8^2 + 3^2}$ or 2.4 ² + 1.5 ²
	(ii)	54.7 or 54.71 to 54.722	2	M1 for $\sin = \frac{4}{their 4.9}$

P	age 5	Mark Schem	е		Syllabus	Paper
		Cambridge IGCSE – Ma	y/June 2	2015	0580	41
6	(a) (i)	$24 < t \le 30$	1			
	(ii)	30.9 or 30.875 nfww	4	M1 for midpoints soi omission) 5, 17, 27, 35, 50		error or
				M1 for use of $\sum fx$ with x in correct intervincluding both boundaries (condone 1 further error or omission) (50, 1530, 3645, 2975, 3500, 650) and M1 (dep on 2 nd M1) for $\sum fx \div 400$		
	(b) (i)	[10 100] 235 320 390 [400]	2	B1 for any two corres SC1 for 235, <i>n</i> , <i>n</i> + 7		
	(ii)	Correct curve or polygon	3	B1 for correct horizo B1FT for correct ver		
				B1FT dep on at least B1 for reasonable increasing curve or polygon through their 6 points		
				If zero scored SC1 for correctly plotted	or 5 out of 6 p	points
	(c) (i)	27.5 to 29	1			
	(ii)	12 to 14	2	B1 for 36 to 38 or	24 seen	
	(iii)	18 to 20	2	B1 for 60 seen or marked on grid		
	(iv)	30 to 45	2	B1 for 355 to 370 s	een	

Ρ	age 6	Mark Scheme Cambridge IGCSE – May/June 2015		SyllabusPaper2015058041
		Cambridge IGCSE – Ma	y/June /	2013 0580 41
7	(a) (i)	8.27 or 8.269 nfww	4	M2 for $7.6^2 + 8.4^2 - 2 \times 7.6 \times 8.4 \times \cos(62)$ oe or M1 for implicit form A1 for $[PQ^2 =]$ 68.3 to 68.5
	(ii)	28.2 or 28.18	2	M1 for $0.5 \times 7.6 \times 8.4 \times \sin 62$ oe
	(b)	55.8 or 55.78 to 55.79 nfww	5	B1 for $[HGJ] = 81$ B1 for $[GHJ] = 61$ M2 for $[GJ =] \frac{63}{\sin(their \ 81)} \times \sin(their \ 61)$ or M1 for implicit form After M0, SC1 for final answer of 68.1
8	(a)	5x = 75 or $5x + 48 = 123$	B2	M1 for $x + (x + 12) + 3(x + 12) = 123$ oe
		15	B 1	
	(b)	6, 7	3	B2 for answer of 6 or 7 OR M1 for $t < 8$ M1 for $t \ge \frac{37}{7}$ OR SC2 for final answer of 5, 6, 7 or 6, 7, 8 or SC1 for final answer of 5, 6, 7, 8
	(c) (i)	1.8 oe	3	M1 for $21 - x = 4(x + 3)$ or better B1 for $[\pm]5x = k$ or $kx = [\pm]9$
	(ii)	$\sqrt{7^2 - 4 \times 3 \times (-5)}$ or better nfww and	B1	or for $\left(x + \frac{7}{6}\right)^2$
		$\frac{-7+\sqrt{q}}{2(3)}$ or $\frac{-7-\sqrt{q}}{2(3)}$ oe	B1	or for $-\frac{7}{6} \pm \sqrt{\frac{5}{3} + \left(\frac{7}{6}\right)^2}$
		-2.91 and 0.57 final ans cao	B1B1	SC1 for 0.6 or 0.573 and - 2.9 or - 2.907 or -2.906 or - 0.57 and 2.91 or 0.57 and - 2.91 seen in working

Pa	age 7	Mark Schem	е		Syllabus	Paper	
		Cambridge IGCSE – Ma	y/June 2	2015	0580	41	
				T			
9	(a) (i)	42	2 2	B1 for $BAC = 90 - 4$		orractly	
	(ii)			placed on diagram of	r ACD = 27 correctly or indicated		
	(b) (i)	37.7 or 37.69 to 37.704 nfww	2	M1 for $6\pi + 4\pi \pm 2\pi$	π ое		
	(ii)	12100, 12060, 12070, 12062.4 to 12065.6 nfww	5	SC4 for answer with or 1206 to 120 OR			
				M2 for total area = $1 - 1$	$\frac{1}{2}\pi 6^2 + \frac{1}{2}\pi 4^2$ $50^2 + \frac{1}{2}\pi 40^2$	-	
				or $\frac{1}{2}\pi \theta$	$50 + \frac{1}{2}\pi 40$	$-\frac{1}{2}\pi 20$	
				M1 for $\frac{1}{2}\pi 6^2$ or $\frac{1}{2}$			
				or $\frac{1}{2}\pi 60^2$ or -	$\frac{1}{2}\pi 40^2$ or $\frac{1}{2}$	$\pi 20^2$	
				A1 for area = 75.3 or 7539 and	= 75.39 to 75.41 7539 to 7541		
				M1 dep for volume	<i>= their</i> area ×	thickness	
10	(a)	475 or 465 to 485	2	B1 for 9.3 to 9.7 [c	cm] seen		
	(b)	Correct perpendicular bisector with two pairs of intersecting arcs	2	B1 for accurate with orM1 for correct inters	-	cs	
	(c)	Compass drawn arc centre <i>B</i> radius 5.8	2	M1 for compass drav	wn arc centre	B	
				B1 for 5.8 cm stated	or used		
		Accurate angle bisector at <i>C</i> with correct intersecting arcs	2	B1 for accurate with or M1 for correct int			
		P	1	cao			

Page 8	Mark Schem	е		Syllabus	Paper
	Cambridge IGCSE – May/June 2015				41
11 (a)	$\frac{At}{t+r}$ final answer oe nfww	4	B1 for $t(A-x) = x$ or $tA - tx = xr$ or $A = \frac{xr}{t} + x$ M1 for correctly contained by the formula of t	npleting mul	
		3	by <i>t</i> (eliminating any isolated M1 for correct facto M1 dep for correct of	risation livision	x terms
(b)	[a =] 64 [b =] -8	3	B1 for $2b = -16$ or (B1 for $a = (their b)^2$ If 0 scored, SC1 for		soi
(c)	$\frac{13x+8}{(x-4)(3x-2)}$ final answer nfww	3	B1 for $6(3x-2) - 50$ B1 for $(x-4)(3x-2)$ or SC2 for final answer	c) oe seen as	denom