Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

MATHEMATICS
0580/41
Paper 4 (Extended)
May/June 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - May/June 2016 | 0580 | 41 |

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working soi
seen or implied	

Question	Answer	Mark	Part marks
(ii) (iii) (iv) (b) (c) (d)	48 32.4[0] $\frac{13}{30}$ 24 660 663.9[0] 1.5[0]	2 1 2 3 3 2 3	M1 for $\frac{72}{3}$ M1 for $\frac{72-\text { their }(\text { ii })-8.4}{72}$ oe M2 for $\frac{19.2}{0.8}$ oe or M1 for recognising 19.2 is 80% M2 for $\frac{550 \times 2 \times 10}{100}+550$ oe or M1 for $\frac{550 \times 2 \times 10}{100}$ oe M1 for 550×1.019^{10} oe M2 for $\sqrt[10]{\frac{638.3[0]}{550}}$ oe or M1 for $550 \times m^{10}=638.3[0]$
(a) (i) (ii) (iii) (b) (i)	Triangle drawn, vertices $(2,-4),(2,-5),(4,-4)$ Triangle drawn, vertices $(-3,4),(-3,5),(-1,4)$ Enlargement [factor] 3 [centre] $(-6,-5)$ $\left(\begin{array}{cc}2 & 5 \\ 3 & 10\end{array}\right)$	2 2 1 1 1 1	$\mathbf{S C 1}$ for translation $\binom{5}{k}$ or $\binom{k}{-2}$ or correct points not joined SC1 for reflection in line $y=k$ or line $x=1$ or correct points not joined

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
(ii) (iii) (c) (i) (c) (ii)	$\left(\begin{array}{ll}10 & 14 \\ 18 & 24\end{array}\right)$ final answer $\frac{1}{4}$ oe Rotation 90° [anti-clockwise] oe $(0,0)$ oe $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	3 1 1 1 2	SC1 for one row or one column correct M2 for $1 \times 4-2 \times 3=4 \times k-3 \times 1$ or better or B1 for $1 \times 4-2 \times 3$ or $4 \times k-3 \times 1$ seen SC1 for one correct row or column
(ii) (iii) (iv) (b) (i) (ii) (iii)	400 350 70 170 Mid-values 40, 80, 125, 200 soi $\Sigma f x$ with correct frequencies and x 's in correct intervals or on boundaries of correct intervals $\div 200$ 106 nfww Correct histogram $\frac{10712}{39800}$ oe isw	$\begin{gathered} 1 \\ 1 \\ 1 \\ 2 \\ \text { M1 } \\ \text { M1 } \\ \\ \text { M1(dep) } \\ \text { A1 } \\ 4 \end{gathered}$ 2	B1 for 30 seen Dependent on second M1 SC2 for correct answer without working B1 for correct widths and B1 for each rectangle of correct height at $0.8,1.6,1.6$ (up to B3) After 0 scored, SC1 for 3 correct frequency densities seen M1 for $\frac{104}{200} \times \frac{103}{199}$ oe
4 (a) (b) (i)	14137 to 14137.2 or 14139 104000 or 103600 to 103700	2 3	M1 for $\frac{4}{3} \times \pi \times 15^{3}$ M2 for $\pi \times 25^{2} \times 60-14140$ or M1 for $\pi \times 25^{2} \times 60$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
(ii) (c) (i) (ii)	52.8 or 52.75 to $52.81 \ldots$ 15.8 or $15.81 \ldots$. 3580 or 3576 to 3581 nfww	3	M1 for their (b)(i) $\div\left(\pi \times 25^{2}\right)$ or $14140 \div\left(\pi \times 25^{2}\right)$ M2 for $\left[r^{2}=\right] \frac{14140}{1 / 3 \times \pi \times 54}$ or M1 for $\frac{1}{3} \times \pi \times r^{2} \times 54=14140$ oe M1 for $(\text { their }(\mathrm{c})(\mathrm{i}))^{2}+54^{2}$ M1 for $\pi \times($ their $(\mathrm{c})(\mathrm{i})) \times \sqrt{ }\left\{(\text { their }(\mathrm{c})(\mathrm{i}))^{2}+54^{2}\right\}$ M1 for $\pi \times(\text { their }(\mathrm{c})(\mathrm{i}))^{2}$
5 (a) (b)	9 10.5 Fully correct curve	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	SC4 for correct curve, but branches joined B3 FT for 9 or 10 points plotted or B2 FT for 7 or 8 points plotted or B1 FT for 5 or 6 points plotted and B1 for two separate branches not touching or cutting y-axis
(c) (d)	$\begin{aligned} & 2.1 \text { to } 2.6 \\ & 8.5 \text { to } 9 \\ & 2,3,5,7 \end{aligned}$	1	SC1 for correct 4 values and no more than one extra positive integer or $\pm 2, \pm 3, \pm 5$, ± 7 or 3 correct values and no extras
(e)	(-2, - 12)	1	
(f) (i)	$20+x^{2}=x^{3}$ $x^{3}-x^{2}-20=0$	M1 A1	Multiplication by x No errors or omissions
(ii)	Fully correct curve $y=x^{2}$	2	SC1 for U - shaped parabola, vertex at origin
(iii)	2.5 to 3.5	1	
(iv)	3.[0] to 3.1 or FT their answer to (iii)	1FT	FT dep on (iii) >0

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
6 (a) $\begin{array}{ll}\text { (i) } \\ & \\ & \text { (ii) } \\ & \\ & \\ & \\ \text { (iii) }\end{array}$	$\begin{aligned} & {[y=] \frac{1}{2}(80-2 x)} \\ & A=\text { their } \frac{1}{2}(80-2 x) \times x \text { oe } \end{aligned}$	M1 M1	$40-x$ is enough
	$A=40 x-x^{2}$ and $x^{2}-40 x+A=0$	A1	No errors or omissions
	$(x-30)(x-10)$	B2	$\begin{aligned} & \text { B1 for } x(x-30)-10(x-30)[=0] \\ & \text { or } x(x-10)-30(x-10)[=0] \\ & \text { or } \\ & \text { SC1 for }(x+a)(x+b) \\ & \text { where } a b=300 \text { or } a+b=-40 \end{aligned}$
	30, 10	B1	
	$\sqrt{(-40)^{2}-4(1)(200)}$ or better	B1	or for $(x-20)^{2}$
(iii)	$p=--40$ and $r=2(1)$	B1	Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both or for $20 \pm \sqrt{200}$
	$\begin{array}{\|l\|} \hline 5.86 \\ 34.14 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	If B0, $\mathbf{S C 1}$ for 5.9 or 5.857 to 5.858 and 34.1 or $34.14 \ldots$
			or 5.86 and 34.14 seen in working or -5.86 and -34.14 as final answers
(b) (i)	$\frac{200}{x}-\frac{200}{x+10}$	M2	or M1 for $\frac{200}{x}$ or $\frac{200}{x+10}$ soi
	$\frac{200(x+10)-200 x}{x(x+10)}=\frac{2000}{x(x+10)}$	A1	No errors or omissions
(ii)	16 [min] 40 [s]	3	B2 for 0.27 or 0.278 or 0.2777 to 0.2778 or $\frac{5}{18}[\mathrm{~h}]$ oe
			or $16 . \dot{6}$ or 16.7 or 16.66 to 16.67 or $\frac{50}{3}$ [min]
			or M1 for
			$2000 \div 80(80+10) \text { or } \frac{200}{80}-\frac{200}{90}$

Question	Answer	Mark	Part marks
(a) (i) (ii) (iii) (b) (c)	$\begin{aligned} & \frac{1}{2} \mathbf{p} \\ & \frac{1}{2} \mathbf{p}-\frac{1}{3} \mathbf{r} \\ & \mathbf{p}+\frac{2}{3} \mathbf{r} \\ & \mathbf{r}+\frac{3}{2} \mathbf{p} \end{aligned}$	1 1 2 3	M1 for correct unsimplified answer or for correct route or for recognising $\overrightarrow{\mathrm{OU}}$ as position vector B2 for $(2 k)^{2}+([-] k)^{2}=180$ oe or M1 for $(2 k)^{2}+([-] k)^{2}$ oe
$8 \quad$ (a) (b) (c) (d) (e) (f)	2 17 $\frac{x-1}{2}$ oe final answer $4 x^{2}+4 x+5$ final answer $\sqrt{2}$ or 1.41 or $1.414 \ldots$.... -1	2 2 2 3 1 1	M1 for $2 x+1=1+4$ B1 for $[\mathrm{h}(3)=] 8$ soi or $2 \times 2^{x}+1$ oe M1 for $y-1=2 x$ or $\frac{y}{2}=x+\frac{1}{2}$ or $x=2 y+1$ M1 for $(2 x+1)^{2}+4$ and B1 for $\left[(2 x+1)^{2}=\right] 4 x^{2}+2 x+2 x+1$ or better
9 (a) (i) (ii)	$-\frac{1}{2} x+2 \text { oе }$ $\begin{aligned} & \frac{16}{a^{2}}\left[+\frac{0^{[2]}}{b^{2}}\right]=1 \text { or } \frac{4^{2}}{a^{2}}\left[+\frac{0^{[2]}}{b^{2}}\right]=1 \\ & \text { and } a^{[2]}=4^{[2]} \\ & {\left[\frac{0^{[2]}}{a^{2}}\right]+\frac{4}{b^{2}}=1 \text { or }\left[\frac{0^{[2]}}{a^{2}}\right]+\frac{2^{2}}{b^{2}}=1} \\ & \text { and } b^{[2]}=2^{[2]} \end{aligned}$	3 1 1	SC2 for $y=-\frac{1}{2} x+c$ oe or SC1 for $y=k x+2$ oe, $k \neq 0$ or M1 for [gradient $=$] $\frac{-2}{4}$ and M1 for substituting $(4,0)$ or $(0,2)$ into $y=($ their $m) x+c$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
(b) (i)	$1.73 \text { or } 1.732 . \text { or } \sqrt{3}$	3	M2 for $\frac{k^{2}}{4}=\frac{3}{4}$ or better or M1 for $\frac{2^{2}}{16}+\frac{k^{2}}{4}=1$ oe
(ii)	81.8 or 81.78 to 81.79	3	M2 for $2 \times \tan ^{-1}\left(\frac{\text { their } \sqrt{3}}{2}\right)$ oe or M1 for $\tan =\frac{\text { their } \sqrt{3}}{2}$ oe
(c) (i) (ii)	8π final answer 72π final answer	$\begin{gathered} 1 \\ 2 \mathrm{FT} \end{gathered}$	FT their (c)(i) $\times 9$ in terms of π M1 for area factor of 3^{2} or 9 or $[$ new $a]=12$, $[$ new $b]=6$

[^0]: ® IGCSE is the registered trademark of Cambridge International Examinations.

