

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/23 May/June 2017

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge IGCSE – Mark Scheme **PUBLISHED**

-

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Part Marks
1	0.407 or 0.4067	1	
2	4x(x-2y) final answer	2	M1 for $4(x^2 - 2xy)$ or $x(4x - 8y)$ or $2(2x^2 - 4xy)$ or $2x(2x - 4y)$
3	120	2	M1 for finding a correct product of prime factors or correctly listing a minimum of 3 multiples of 20 and 24 or for answer $2^3 \times 3 \times 5$ oe or $120k$ where k is an integer > 1
4	$(x-y)^2$ oe final answer	2	M1 for $x - y = \sqrt{a}$ or <i>their</i> $(x - y)$ squared
5	68.6 or 68.62 to 68.64	2	M1 for $\frac{1}{2} \times \frac{4}{3}\pi \times 3.2^3$ If zero scored, SC1 for final answer 137 or 137.2 to 137.3
6	$\frac{4}{25}$ oe	2	M1 for $\frac{2}{5} \times \frac{2}{5}$ oe or denominator 5 ² oe
7	$\frac{32}{x^2}$ or $32x^{-2}$ final answer	2	M1 for $y = \frac{k}{x^2}$ oe or $[k =]$ 32
8	$\frac{2}{a^4}$ or $2a^{-4}$ final answer	2	B1 for $\frac{2}{a^k}$ oe or $\frac{k}{a^4}$ oe $(k \neq 0)$ final answer
9(a)(i)	$\begin{pmatrix} 30 \\ -20 \end{pmatrix}$	1	
9(a)(ii)	$\begin{pmatrix} -6\\ 4 \end{pmatrix}$	1	
9(b)	-4	1	

Cambridge IGCSE – Mark Scheme PUBLISHED

Question	Answer	Marks	Part Marks
10(a)	10	2	M1 for $5x + 6x + 7x = 180$ oe or $\frac{180}{5+6+7}$ or B1 for angles 50, 60 and 70
10(b)	70	1FT	FT $7 \times their$ (a) provided $0 < their answer < 180$
11	Correct region	3	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
12(a)	3+12x final answer	1	
12(b)	24x + 31 final answer	2	M1 for $3 + 4(6x + 7)$
13	150	3	M2 for $\left(\frac{1}{0.512}\right)^{\frac{2}{3}}$ oe or $\left(\frac{0.512}{1}\right)^{\frac{2}{3}}$ oe or M1 for scale factor $\left(\frac{1}{0.512}\right)^{\frac{1}{3}}$ oe or $\left(\frac{0.512}{[1]}\right)^{\frac{1}{3}}$ oe
14	$10^{k+2} \times [0].\dot{6}\dot{3} - 10^k \times [0].\dot{6}\dot{3}$ oe where $k > 1$	M1	
	$\frac{63}{99}$ or equivalent fraction	A1	e.g. $\frac{6300}{9900}$ but not $\frac{7}{11}$
	$\frac{7}{11}$	B1	
15	35.8 or 35.77	3	M2 for $[\sin =] \frac{24 \times \sin 71.8}{39}$ or M1 for $\frac{39}{\sin 71.8} = \frac{24}{\sin x}$ oe
16(a)	$x \leq 3$ final answer	2	M1 for $13 - 7 \ge 3x - x$ oe
16(b)	1, 2, 3	1FT	correct answer or FT their answer to (a)

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Part Marks
$= \frac{5}{7} (\mathbf{q} - \mathbf{p}) \text{ oe or } QZ = \frac{2}{7} (\mathbf{p} - \mathbf{q}) \text{ oe}$ ect route from <i>O</i> to <i>Z</i> or identifying <i>OZ</i>
$\times \frac{1}{2}(200+280)$ oe art area
2 throughout
or $\frac{8k}{12k}$
$r \frac{10k}{12k}$
or ky^4 as final answer $(k \neq 0)$
ig the square: 1) ² oe $\sqrt{1-\frac{2}{5}}$ or $-1-\sqrt{1-\frac{2}{5}}$ oe
225 and -1.8 or -1.774 or -1.775 1.77 as answer d -1.77 seen in working core without working is 2
=] $\frac{26}{\sqrt{26^2 + 26^2}}$ oe r^2 =] $26^2 + 26^2$ oe =] $26 \div their AC$ oe
$r^{2} =$

Cambridge IGCSE – Mark Scheme PUBLISHED

Question	Answer	Marks	Part Marks
23(a)	4(x-6) or $4x - 24$ as final answer	1	
23(b)	$x^2 + 23x + 26$ final answer	3	B2 for $x^2 + 4x + 4x + 16$ or better or B1 for $15x + 10$
24	1.96 cao	5	M4 for $\left(\left(\left(\sqrt[3]{\frac{2500 \times 1.6 \times 3}{100} + 2000}}{\frac{2000}{2000}} \right) - 1 \right) - 1 \right) [\times 100]$ oe or 1.96or [0].0196 or 101.96 or 1.0196 or 1.0196 or N3 for $\sqrt[3]{\frac{2500 \times 1.6 \times 3}{100} + 2000}}{\frac{2500 \times 1.6 \times 3}{2000}}$ or B2 for [SI =] 120 or [CI total=] 2120 or M1 for $\frac{2500 \times 3 \times 1.6}{100}$ and M1 for $2000 \times (k)^{3}$