CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2015 series

0580 MATHEMATICS

0580/42

Paper 4 (Paper 42 – Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®], components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	42

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

	Qu.	Answers	Mark	Part Marks
1	(a)	$\frac{1.5}{100} \times 450000$ oe	1	Accept equivalent methods
	(b)	6000	3	M2 for $\frac{6750}{112.5} \times 100$ oe or M1 for 112.5% associated with 6750 oe
	(c)	376.25 cao final answer	2	B1 for 21.5 and 17.5 seen
	(d)	22.4	2	$M1$ for 200^2 or 2^2 seen oe
	(e)	5184	2	M1 for $12 \times 16 \times 27$
	(f)	9023	3	M1 for 12000 ÷ 1.33 A1 for 9022.55 to 9022.56 or 9022.6 or 9020 B1indep for their answer rounded to the nearest euro if possible
2	(a) (i)	A 4 9 B 8 10 C	3	B2 for 8 or 9 numbers correct B1 for 6 or 7 numbers correct
	(ii)	∈ cao	1	
		{3}	1FT	FT <i>their</i> intersection of all 3 sets – <i>their</i>
		∅ or {}	1	diagram
	(iii)	5	1FT	FT their set B on diagram
	(b) (i)	C	1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	42

(ii)	X Y	1	
3 (a)	2 0 -2 2	3	B2 for 3 correct B1 for 2 correct
(b)	smooth correct curve through correct points	4	B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots FT their table
(c)	line $y = \frac{1}{2}(x+1)$ ruled <u>and</u> -2.85 to -2.95 -1		Line must be fit for purpose
	0.85 to 0.95	4	B3 for correct line and 2 correct values or B2 for correct line and 1 correct value or B1 for correct line or SC2 for no/wrong line and 3 correct values or SC1 for no/wrong line and 2 correct values
(d)	tangent ruled	B1	No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = -1.85$ and $x = -1.65$
	- 1.1 to - 1.5	2	dep on B1 M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent Accept M1 for answer in range 1.1 to 1.5 after B1
4 (a)	(11y-m)(11y+m) final answer	2	B1 for 11y seen
(b)	$\frac{3x^2 + 5x - 14}{(3x - 5)(x - 1)}$ final answer	3	B1 for denom $(3x-5)(x-1)$ oe isw and B1 for $3x^2 + 6x - 5x - 10$ soi

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	42

	-		,
(c)	$\frac{-2 \pm \sqrt{2^2 - 4(3)(-7)}}{2 \times 3}$	2	B1 for $\sqrt{2^2 - 4(3)(-7)}$ or better seen
	- 1.90 1.23 final answers	1, 1	and if in form $\frac{p + or - \sqrt{q}}{r}$ B1 for $p = -2$ and $r = 2 \times 3$ SC1 for $-1.9, -1.896$ or -1.897 and 1.2 or 1.230 or -1.23 and 1.90 final answers or -1.90 and 1.23 seen in working
(d) (i)	$\frac{1}{2}(x+4+3x+2)(x+1)=15$	M1	Allow $\frac{1}{2}(4x+6)(x+1)=15$
	$\frac{1}{2}(x+4+3x+2)(x+1)=15$ $4x^2+4x+6x+6=30$ or $2x^2+2x+3x+3=15$	M1	Dep on 1 st M1
	$2x^{2} + 5x - 12 = 0$ 1.5 or $\frac{3}{2}$, -4	A1	With no errors or omissions
(ii)	1.5 or $\frac{3}{2}$, -4	3	B2 for $(2x-3)(x+4)$ or $\frac{-5 \pm \sqrt{5^2 - 4(2)(-12)}}{2 \times 2}$ or SC1 for $(2x+a)(x+b)$ where <i>a</i> and <i>b</i> are integers and $a+2b=5$ or $ab=-12$ or $\sqrt{5^2 - 4(2)(-12)}$ or $\frac{p+or-\sqrt{q}}{r}$ where $p=-5$ and $r=2\times 2$
(iii)	6.5 or $\frac{13}{2}$	1FT	FT $3 \times their$ pos root from (d)(ii) + 2
5 (a)	$\frac{1}{2} \times 16 \times 5.4 \times \sin 62$ oe	M1	
	38.14	A1	
(b)	95.6 or 95.64 to 95.65	4	M2 for $\frac{6.7 \times \sin 48}{8.4}$ or M1 for implicit form
			and M1dep for 180 – 48 – <i>their</i> 36.4

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	42

	(c)		286 or 285.7 to 285.8		5	B1 for [Angle <i>APB</i> =] 83°
						M2 for $180^2 + 245^2 - 2 \times 180 \times 245 \times \cos their 83$
						or M1 for implicit form and A1 for $[AB^2 =] 81676[.1]$
						After 0 scored, SC2 for ans 406.87 to 406.88 or 406.9 or 407 if 146° used in cos rule Or SC1 for $180^2 + 245^2 - 2 \times 180 \times 245 \times \cos 146$
			4			
6	(a)		$\frac{4}{15}$		1	
	(b)		80		1FT	FT 300 × their (a)
	(c)	(i)	$\frac{40}{225}$ oe	$\left[\frac{8}{45}\right]$	3	M2 for $\frac{5}{15} \times \frac{4}{15} \times 2$ oe or M1 for $\frac{5}{15} \times \frac{4}{15}$
		(ii)	$\frac{121}{225}$		3	15 15 M2 for $\frac{11}{15} \times \frac{11}{15}$ oe
						or M1 for $\frac{11}{15}$ or $1 - \frac{4}{15}$ seen
	(d)	(i)	$\frac{108}{210}$ oe	$\left[\frac{18}{35}\right]$	3	M2 for $\frac{6}{15} \times \frac{9}{14} + \frac{9}{15} \times \frac{6}{14}$ oe
						or M1 for $\frac{6}{15} \times \frac{9}{14}$ oe or $\frac{9}{15} \times \frac{6}{14}$ oe or $\frac{6}{15} \times \frac{5}{14}$ oe or $\frac{6}{15} \times \frac{4}{14}$ oe
		(ii)	$\frac{148}{210}$ oe	$\left[\frac{74}{105}\right]$	4	M3 for $\frac{5}{15} \times \frac{10}{14} + \frac{6}{15} \times \frac{9}{14} + \frac{4}{15} \times \frac{11}{4}$ oe or $1 - \frac{5}{15} \times \frac{4}{14} - \frac{6}{15} \times \frac{5}{14} - \frac{4}{15} \times \frac{3}{14}$
						or M2 for equivalent of 2 of above products added together oe
						or M1 for one correct relevant product oe
7	(a)	(i)	Rotation [centre] (0, 0) or origin 90° [anticlockwise] oe		1 1 1	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	42

	(ii)	Enlargement	1	
		[centre] $(-2, 1)$	1	
		[s.f.] - 2	1	
				(2)
	(b)	vertices at (-3, 4) (-3, 5) (-3, 6) (-2, 6)	2	SC1 for translation by $\begin{pmatrix} 2 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 1 \end{pmatrix}$
	(c)	vertices at (7, 3) (7, 4) (7, 5) (6, 5)	2	SC1 for reflection in $y = 1$ or reflection in any vertical line
	(d)	reflection x-axis oe	1	
0	(a) (i)	47.7 47.74 + 2.47.75	2	M4.6 F 1.60 2 24
8	(a) (i)	47.7 or 47.74 to 47.75	3	M1 for [arc =] $68 - 2 \times 24$
				or $24 + 24 + \frac{x}{360} \times 2\pi \times 24 = 68$
				M1 for $[x =]$ their arc \times 360 \div (2 \times π \times 24)
	(ii)	252 or 252.3 to 252.4	6	M1 for $r = \frac{20}{2\pi}$ or
				$\left(\frac{their 47.7}{360} \times 2 \times \pi \times 24\right) \div (2\pi)$
				10
				A1 for $r = 3.18$ or 3.182 to 3.183 or $\frac{10}{\pi}$
				M1 for $h^2 = 24^2 - their r^2$
				A1 for $h = 23.8$ or 23.78 to 23.79
				111 101 W 25.0 01 25.70 to 25.77
				M1dep on M1 earned for
				$V = \frac{1}{3}\pi \times their \ h \times their \ r^2$
				3
	(b)	139 or 139.3 to 139.4 nfww	5	M4 for $8^2 + \frac{1}{4}\pi \times 8^2 + \frac{1}{2}\pi \times \left(\frac{8}{2}\right)^2$
				or M1 for $\frac{1}{4}\pi \times 8^2$
				and M1 for $\frac{1}{2}\pi \times \left(\frac{8}{2}\right)^2$
				and M1 for 8^2 added to at least one term with π
9	(a)	$140 < h \le 144$	1	
	(b)	144.875 nfww	4	M1 for at least 4 correct mid-values soi
				M1 for $\sum fx$ where x is in the correct interval,
				allow one further error/omission
				M1 dep for ÷ 40
				dependent on second method mark
]	_

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	42

	(c)	4 correct blocks	4	B3 for 3 correct blocks B2 for 2 correct blocks B1 for 1 correct block or at least 3 correct frequency densities (1.4, 1, 1, 0.65)
10	(a)	4x + 10y < 80	1	With no errors seen
	(b)	y > x	1	
		$y \le 6$ or $y < 7$	1	Accept $0 \le y \le 6$ or $0 < y \le 6$ or $0 \le y < 7$ or $0 < y < 7$
	(c)	ruled broken line through (5, 6) to (10,4)	B2	SC1 for correct only at (5, 6) or (10, 4)
		ruled broken line $y = x$ ruled solid line $y = 6$ or broken $y = 7$	B1 B1	Must be consistent with their (b)
		correct region indicated	B1	
	(d)	76	2	SC1 for (4, 6) indicated or
				4x+10y evaluated for (x, y) in <i>their</i> region, x, y integers
11	(a)		1	
	(b)	30 10	1 1	
	(c)	n(n+1) oe	2	B1 for $an^2 + bn + c$ a, b, c numeric $a \neq 0$
	(d)	$n(n+1)$ oe $\frac{1}{2}n(n-1)$ oe	2	B1 for using $\frac{1}{2}$ oe in expression of form
				$\frac{1}{2}(an^2 + bn + c) a \neq 0 \text{or} kn(n-1) k \neq 0$