MARK SCHEME for the March 2015 series

0580 MATHEMATICS

0580／42
Paper 4 （Paper 42 －Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ， components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1 (a) (b) (c) (d) (e) (f)	$\frac{1.5}{100} \times 450000$ oe 6000 376.25 cao final answer 22.4 5184 9023	1 3 2 2 2 3	Accept equivalent methods M2 for $\frac{6750}{112.5} \times 100$ oe or M1 for 112.5% associated with 6750 oe B1 for 21.5 and 17.5 seen M1 for 200^{2} or 2^{2} seen oe M1 for $12 \times 16 \times 27$ M1 for $12000 \div 1.33$ A1 for 9022.55 to 9022.56 or 9022.6 or 9020 B1indep for their answer rounded to the nearest euro if possible
2 (a) (i) (ii) (iii) (b) (i)		3 1 1FT 1 1FT 1	B2 for 8 or 9 numbers correct B1 for 6 or 7 numbers correct FT their intersection of all 3 sets - their diagram FT their set B on diagram

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

(ii)		1	
3 (a) (b) (c) (d)	$20-22$ smooth correct curve through correct points line $y=\frac{1}{2}(x+1)$ ruled $\underline{\text { and }}$ -2.85 to -2.95 -1 0.85 to 0.95 tangent ruled -1.1 to -1.5	3 4 	B2 for 3 correct B1 for 2 correct B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots FT their table Line must be fit for purpose B3 for correct line and 2 correct values or B2 for correct line and 1 correct value or B1 for correct line or SC2 for no/wrong line and 3 correct values or SC1 for no/wrong line and 2 correct values No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-1.85$ and $x=-1.65$ dep on B1 M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent Accept M1 for answer in range 1.1 to 1.5 after B1
4 (a) (b)	$(11 y-m)(11 y+m)$ final answer $\frac{3 x^{2}+5 x-14}{(3 x-5)(x-1)}$ final answer	2 3	B1 for $11 y$ seen B1 for denom $(3 x-5)(x-1)$ oe isw and B1 for $3 x^{2}+6 x-5 x-10$ soi

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(ii) \\
(b) \\
(c) \\
(d)
\end{tabular} \& ```
Enlargement
[centre] \((-2,1)\)
[s.f.] -2
vertices at \((-3,4)(-3,5)(-3,6)\)
\((-2,6)\)
vertices at \((7,3)(7,4)(7,5)(6,5)\)
reflection
\(x\)-axis oe
``` \& 1
1
1
2
2
2 \& \begin{tabular}{l}
\(\mathbf{S C 1}\) for translation by \(\binom{2}{k}\) or \(\binom{k}{1}\) \\
SC1 for reflection in \(y=1\) or reflection in any vertical line
\end{tabular} \\
\hline \begin{tabular}{l}
8 \\
(a) (i) \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
47.7 or 47.74 to 47.75 \\
252 or 252.3 to \(252.4 \ldots\).... \\
139 or 139.3 to 139.4... nfww
\end{tabular} \& 3
6

5 \& | M1 for [arc =] 68-2 $\times 24$ or $24+24+\frac{x}{360} \times 2 \pi \times 24=68$ |
| :--- |
| M1 for $[x=]$ their $\operatorname{arc} \times 360 \div(2 \times \pi \times 24)$ |
| M1 for $r=\frac{20}{2 \pi}$ or |
| $\left(\frac{\text { their } 47.7}{360} \times 2 \times \pi \times 24\right) \div(2 \pi)$ |
| A1 for $r=3.18$ or 3.182 to $3.183 \ldots$ or $\frac{10}{\pi}$ |
| M1 for $h^{2}=24^{2}$-their $r^{2}$ |
| A1 for $h=23.8$ or $23.78 \ldots$ to 23.79 |
| M1dep on M1 earned for $V=\frac{1}{3} \pi \times$ their $h \times$ their $r^{2}$ |
| M4 for $8^{2}+\frac{1}{4} \pi \times 8^{2}+\frac{1}{2} \pi \times\left(\frac{8}{2}\right)^{2}$ |
| or M1 for $\frac{1}{4} \pi \times 8^{2}$ |
| and M1 for $\frac{1}{2} \pi \times\left(\frac{8}{2}\right)^{2}$ |
| and M1 for $8^{2}$ added to at least one term with $\pi$ | <br>

\hline | $9 \quad$ (a) |
| :--- |
| (b) | \& | $140<h \leqslant 144$ |
| :--- |
| 144.875 nfww | \& \[

$$
\begin{aligned}
& 1 \\
& 4
\end{aligned}
$$

\] \& | M1 for at least 4 correct mid-values soi |
| :--- |
| M1 for $\sum f x$ where $x$ is in the correct interval, allow one further error/omission |
| M1 dep for $\div 40$ |
| dependent on second method mark | <br>

\hline
\end{tabular}

| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge IGCSE - March 2015 | 0580 | 42 |


| (c) | 4 correct blocks | 4 | B3 for 3 correct blocks B2 for 2 correct blocks B1 for 1 correct block or at least 3 correct frequency densities (1.4, 1, 1, 0.65 ) |
| :---: | :---: | :---: | :---: |
| 10 (a) <br> (b) <br> (c) <br> (d) | ```\(4 x+10 y<80\) \(y>x\) \(y \leqslant 6\) or \(y<7\) ruled broken line through \((5,6)\) to \((10,4)\) ruled broken line \(y=x\) ruled solid line \(y=6\) or broken \(y=7\) correct region indicated 76``` | 1 <br> 1 <br> B2 <br> B1 <br> B1 <br> B1 <br> 2 | With no errors seen <br> Accept $0 \leqslant y \leqslant 6$ or $0<y \leqslant 6$ or $0 \leqslant y<7$ or $0<y<7$ <br> SC1 for correct only at $(5,6)$ or $(10,4)$ <br> Must be consistent with their (b) <br> SC1 for ( 4,6 ) indicated or <br> $4 x+10 y$ evaluated for $(x, y)$ in their region, $x, y$ integers |
| 11 (a) <br> (b) <br> (c) <br> (d) | 30 10 <br> $n(n+1)$ oe <br> $\frac{1}{2} n(n-1)$ oe | 1 1 2 | B1 for $a n^{2}+b n+c a, b, c$ numeric $a \neq 0$ <br> B1 for using $\frac{1}{2}$ oe in expression of form $\frac{1}{2}\left(a n^{2}+b n+c\right) \quad a \neq 0$ or $k n(n-1) \quad k \neq 0$ |

