

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS 0580/42
Paper 42 (Extended) March 2017

MARK SCHEME

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

	Question	Answer	Marks	Part Marks
1	(a)	22.9 or 22.85 to 22.86	2	M1 for $\frac{8}{10+17+8}$ [× 100] oe
	(b)	$5635 \times \frac{17}{10 + 17 + 8}$ or better [= 2737]	2	M1 for $\frac{5635}{(10+17+8)}$
	(c)	5000	3	M2 for $5635 = k \left(1 + \frac{2.42}{100} \right)^5$ oe
				or B1 for $\left(1 + \frac{2.42}{100}\right)$
	(d)	9950	2	M1 for 2 × 2500 or 3 × 1650
	(e)	1.98 final answer	2	B1 for 1.976 or 1.98 not final answer or M1 for 130 × 0.0152
2	(a) (i)	Rotation	1	
		90° [anticlockwise] oe	1	
		(9, 5)	1	
	(ii)	Translation	1	
		$\begin{pmatrix} -8 \\ -14 \end{pmatrix}$ oe	1	
	(iii)	Enlargement	1	
		$[sf]$ $\frac{1}{3}$	1	
		(-8, -2)	1	
	(b) (i)	Image at $(1, -3)(2, -3)(2, -5)$	2	M1 for triangle correct size and orientation, wrong position or SC1 for correct reflection in $y = -x$
	(ii)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	2	B1 for 1 correct column or row

© UCLES 2017 Page 2 of 7

Cambridge IGCSE – Mark Scheme **PUBLISHED**

	Question	Answer	Marks	Part Marks
3	(a)	0 0.5 oe 1.25 oe	1, 1, 1	
	(b)	Fully correct smooth curve	4	B3 FT for 7 or 8 points or B2 FT for 5 or 6 points or B1 FT for 3 or 4 points
	(c)	3.6 to 3.8	2	M1 for $y = 3.5$ soi
	(d)	line $y = x + 1$ ruled	M1	
		-1.55 to -1.40 4.55 to 4.8	A1 A1	If 0 scored SC1 for $y = x + 1$ stated or implied or for 2 correct values given
	(e) (i)	Point plotted at (5, 5)	1	
	(ii)	Tangent ruled from A	1	
	(iii)	1.2 to 1.4	B2	B2 and M1 dep on reasonable attempt at tangent from (5, 5)
				M1 for change in y/ change in x of their ruled line
4	(a)	$\frac{1}{8}$ oe	3	M2 for $\frac{1}{2} \left(1 - \frac{1}{6} - \frac{1}{4} - \frac{1}{3} \right)$ oe or M1 for $\frac{1}{6} + \frac{1}{4} + \frac{1}{3}$ seen oe or idea that
	(b)	$\frac{7}{12}$ oe	2	all sum to 1 M1 for $\frac{1}{3} + \frac{1}{4}$ oe
	(c) (i)	$\frac{1}{16}$ oe	2	M1 for $\frac{1}{4} \times \frac{1}{4}$ oe
	(ii)	$\frac{2}{24}$ oe	3	M2 for $2 \times \frac{1}{6} \times \frac{1}{4}$ oe
				or M1 for $\frac{1}{6} \times \frac{1}{4}$ oe
	(d)	12	1	

© UCLES 2017 Page 3 of 7

	Question	Answer	Marks	Part Marks
5	(a) (i)	(3x-1)(x+4)	2	M1 for $(3x+b)(x+c)$ with $bc = -4$ or $3c+b=11$ or for $3x(x+4)-1(x+4)$ or for $x(3x-1)+4(3x-1)$
	(ii)	$\frac{1}{3}$ oe and -4	1	
	(b) (i)	$2 \times 2(x-4) - 2(2x+11) = (2x+11)(x-4)$ or better	M2	M1 for common denom $2(2x+11)(x-4)$ seen or attempt to multiply through by denoms or for $\frac{2(x-4)-(2x+11)}{(2x+11)(x-4)} \left[= \frac{1}{2} \right]$
		$2x^2 + 11x - 8x - 44$ or better	B1	or for other correct relevant 2 bracket expansion if alt method used
		$4x-16-4x-22 = 2x^2-8x+11x-44$ $2x^2+3x-6=0$	A1	correct solution reached with all brackets expanded and no errors or omissions seen
	(ii)	$\frac{-3 \pm \sqrt{(3)^2 - 4(2)(-6)}}{2 \times 2}$	2	B1 for $\sqrt{(3)^2 - 4(2)(-6)}$ or better or $\left(x + \frac{3}{4}\right)^2$ oe and B1 for $\frac{-3 + \sqrt{q}}{2(2)}$ or $\frac{-3 - \sqrt{q}}{2(2)}$ or better or $-\frac{3}{4} + \sqrt{\frac{57}{16}}$ oe or $-\frac{3}{4} - \sqrt{\frac{57}{16}}$ oe
		-2.64 and 1.14 final ans cao	B1B1	SC1 for -2.6 or -2.637 and 1.1 or 1.137 or -2.64 and 1.14 seen in working or 2.64 and -1.14 as final answers
6	(a) (i)	27	1	
	(ii)	3.89 or 3.888 to 3.889	2	M1 for $\frac{7}{EZ} = \frac{9}{5}$ oe
	(b)	76 cao	3	B2 for $ABC = 104$ or $AOC = 152$ or $COD = 28$ or $OBA = 52$ and $OBC = 52$ or $BCD = 128$ and $OCB = 52$ or B1 for any one of $OBA, OBC, OCB = 52$ or $OCB = 52$ or

© UCLES 2017 Page 4 of 7

Questi	on	Answer	Marks	Part Marks
(c) (i	i)	90	1	
		angle in semicircle	1	
(ii	i)	27	1	
		tangent [perpendicular to] radius	1	
(iii	i)	rectangle	1	
7 (a)		72.7 or 72.70 to 72.71 nfww	4	 M1 for midpoints soi (condone 1 error or omission) (47.5, 55, 65, 80, 95, 110) M1 for use of ∑fx with x in correct interval including both boundaries (condone 1 further error or omission)
				(1092.5, 3520, 7930, 10880, 2470, 3190) M1 (dep on 2nd M1) for $\sum fx \div 400$
(b) (i	i)	[23] 87 209 345 371 [400]	2	B1 for 2 or 3 correct
(ii	i)	Correct graph	3	B1FT their (b)(i) for 6 correct heights B1 for 6 points at upper ends of intervals on correct vertical line B1FT (dep on at least B1) for increasing curve or polygon through 6 points
				After 0 scored, SC1FT their (b)(i) for 5 correct points plotted
(iii	i) (a)	69 to 70	1	
	(b)	20 to 23	2FT	FT their cumulative freq curve M1 for correct UQ or LQ for their cumulative freq curve
	(c)	72 to 75	2	M1 for 240 soi
8 (a) (i	i)	5.14 or 5.135 to 5.142 nfww	4	M2 for $[XY^2 =] 12.5^2 + 9.9^2 - 2 \times 12.5 \times 9.9 \times \cos 23$ or M1 for implicit version A1 for 26.4 to 26.5 OR B1 for $[XYT =] 108$ or $[TXY =] 49$ M2 for $\frac{12.5 \sin 23}{\sin(180 - 72)}$ oe or M1 for $\frac{\sin(180 - 72)}{12.5} = \frac{\sin 23}{XY}$ oe

© UCLES 2017 Page 5 of 7

	Question	Answer	Marks	Part Marks
	(ii)	15.6 or 15.7 or 15.64 to 15.68	3	M2 for $[TZ=]\frac{9.9}{\sin 37} \times \sin(72)$ oe or M1 for $\frac{9.9}{\sin 37} = \frac{TZ}{\sin 72}$ oe OR M2 for $\frac{12.5 \times \sin(180 - 23 - 108)}{\sin 37}$ oe or M1 for $\frac{\sin 37}{12.5} = \frac{\sin(180 - 23 - 108)}{TZ}$ oe
	(b)	3.79 or 3.793 to 3.794	4	M3 for $r = 20.5 \div \left(2 + \frac{3 \times 65 \times 2\pi}{360}\right)$ oe or M2 for $20.5 = 2r + \frac{3 \times 65}{360} \times 2\pi r$ oe or M1 for $[3 \times] \frac{65}{360} \times 2\pi r$ oe or $20.5 = 2r + \text{expression involving } \pi$
9	(a)	x < 10 oe	1	Accept $x \leq 9$
		$y \geqslant 2$ oe	1	Accept $y > 1$
	(b)	$x + 3y \leqslant 21$ oe	1	Mark answer line isw
	(c)	ruled broken line $x = 10$	B1	or ruled line $x = 9$
		ruled line $y = 2$	B1	or ruled broken line $y = 1$
		ruled line from (0, 7) to (21, 0)	B2	SC1 for line with negative gradient correct only at (0, 7) or (21, 0)
		correct region indicated cao	1	
	(d) (i)	4	1	
	(ii)	20	1	
10	(a) (i)	$(6-2) \times 180 \text{ or } (2 \times 6 - 4) \times 90$ or $(360 \div 6)$	M1	
		$(6-2) \times 180 \div 6$ or $(2 \times 6-4) \times 90 \div 6$ or $180 - (360 \div 6)$	M1dep	dep on previous M1
	(ii)	$1.73x \text{ or } x\sqrt{3} \text{ oe}$	3	M2 for $2x\sin 60$ or $2x\cos 30$ oe or for $\sqrt{x^2 + x^2 - 2 \times x \times x \times \cos 120}$ or M1 for $x\sin 60$ or $x\cos 30$ oe or for $x^2 + x^2 - 2 \times x \times x \times \cos 120$

© UCLES 2017 Page 6 of 7

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Part Marks
(iii)	$(10-x)\sin 30$ seen oe	M1	
	$10 + 2((10 - x)\sin 30)$ oe	M1dep	dep on previous M1
	$10 + 10 - x \text{ or } 10 + 2 \times \frac{1}{2} \times (10 - x)$	A1	with no errors or omissions seen
(b)	12.7 or 12.67 to 12.68 nfww	4	B3 for 7.32 to 7.33
			or M2 for $x = 20 \div (1 + 1.73)$ oe or M1 for $20 - x = their$ (a)(ii) oe
11 (a)	4 5 6 7	1	
	8 16 32 64 128	3	B2 for 3 or 4 correct or B1 for first 2 correct If 0 scored, SC1 for 4 values correctly doubled FT one error
(b)	2^n oe	1	
(c) (i)	2+4+8=14	1	
	16 - 2 = 14	1	or for $14 + 2 = 16 = 2^4$
(ii)	62 and 6	2	B1 for each
(iii)	$2^{n+1} - 2$ oe	1	
(iv)	9	1	

© UCLES 2017 Page 7 of 7