MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/21
Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	21

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1	11 or -11	1	
2 (a) (b)	$\begin{aligned} & 1.32656 \ldots \\ & 1.327 \end{aligned}$	1 1ft	
3	72	2	M1 for $84 \div 7$
4	105	2	M1 for 180-55-50 or B1 for 55 or 75 seen in the correct angle inside the triangle
5	correct working; $\text { e.g. } \frac{3 k}{2 k} \times \frac{16 n}{3 n}=8$	2	M1 for $\frac{3 k}{2 k}$ and $\mathbf{A 1}$ for $\frac{3 k}{2 k} \times \frac{16 n}{3 n}=8$
6	$3 x(4 y-x)$ final answer	2	B1 for $3\left(4 x y-x^{2}\right)$ or $x(12 y-3 x)$
$7 \quad$ (a) (b)	Equidistant from A and B (or C and D or $A D$ and $B C$)		
8	$x \geq-\frac{3}{8} \text { oe }$	2	M1 for $-3 \leq 8 x$ oe If 0 then $\mathbf{S C 1}$ for $-\frac{3}{8}$ with incorrect inequality.
9	48.15, 48.45 cao	2	B1 B1 If 0 then M1 for 16.0 and 16.15 soi
10	$(a+b)(p-2)$	2	B1 $p(\mathrm{a}+\mathrm{b})-2(a+b)$ or $a(p-2)+b(p-2)$
11	$3 x^{4}$	2	B1 for $k x^{4}$ or $3 x^{k}$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	21

12 (a) (b)	$\frac{3}{11}$	1 1	
13	175 cao final answer	3	B2 for 175.4 ... or M1 for $200 \div 1.14$
14	454.27 cao final answer	3	M1 for $420 \times\left(1+\frac{4}{100}\right)^{2}$ oe and A1 for 454 or 454.2 to 454.3 or SC2 for answer 34.27 or SC1 for answer 34.2 to 34.3
15	2.67 or 2.672 to 2.67301	3	M2 for $\sqrt[3]{\left(80 \div \frac{4}{3} \pi\right)}$ oe or M1 for $80 \div\left(\frac{4}{3} \pi\right)$ oe
16	35.4 or 35.36 to 35.37	3	M2 for $1000 \div\left(\pi \times 0.75^{2} \times 16\right)$ oe or M1 for $\pi \times 0.75^{2} \times 16$ oe or $1000 \div\left(\pi \times 0.75^{2}\right)$
17	$y=2 x-1$	3	B2 for $y=m x-1$ or $y=2 x+c$ or $2 x-1$ or $\mathbf{B} 1$ for gradient $=2, \mathbf{B 1}$ for $c=-1$ or SC1 for $\frac{6}{3}$ or $\frac{5--1}{3[-0]}$
18 (a) (b)	$(x+6)(x-5)$ $\frac{x+4}{x+6}$ final answer	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\mathbf{S C 1}$ for $(x+a)(x+b)$ where $a b=-30$ or $a+b$
19	$\frac{6}{7} \text { or } 0.857[1 \ldots]$	3	M1 for $t=\frac{k}{\sqrt{u}}$ oe A1 for $k=6$
20 (a) (i) (ii) (b)	$\begin{aligned} & \mathbf{p}+\frac{1}{2} \mathbf{r} \\ & 2 \mathbf{p}+\mathbf{r} \end{aligned}$ Midpoint of $R \mathrm{Q}$	1 1ft 1	$2 \times$ their (i)

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	21

21	52.3 or 52.27 to 52.28	3	SC2 for 28.3 or 28.7 to 28.8 If $0, \mathbf{M} 2$ for $\frac{135}{360} \times \pi \times 24+2 \times 12$ or M1 for $\frac{135}{360} \times \pi \times 24$
22	$\frac{5 x+13}{(x+3)(x+2)}$ oe final answer	3	B1 for common denominator $(x+3)(x+2)$ seen M1 for $2(x+2)+3(x+3)$ soi
23	24.8 or 24.77 to 24.78	4	M1 for recognition of angle $C E A$ M1 for $\sqrt{12^{2}+5^{2}}$ M1 for $\tan =\frac{6}{\text { their } A E}$ oe
24 (a) (b)	$\begin{aligned} & \left(\begin{array}{cc} 6 & 7 \\ 16 & 17 \end{array}\right) \\ & \frac{1}{5}\left(\begin{array}{cc} 2 & -3 \\ -1 & 4 \end{array}\right) \end{aligned}$	2	B1 for 1 correct row or 1 correct column B1 for $k\left(\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right)$ or $\frac{1}{5}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
$25 \text { (a) }$	$\begin{aligned} & 2.8 \mathrm{oe} \\ & 700 \end{aligned}$	3	M2 for $1 / 2(20+30) \times 28$ oe or M1 for a correct area statement
26	420	5	M1 for $[C B=] \sqrt{4^{2}+(9-6)^{2}}$ M1 for their $C B$ from Pythagoras $\times 15$ M1 for $[2 \times] \frac{1}{2}(6+9) \times 4$ M1 for $4 \times 15,9 \times 15,6 \times 15$ with intention to add

