## Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

## MAXIMUM MARK: 50

## Section A

1


$$
2 \times(1)
$$

[2]

2


3 Less slip/Positive drive

4 Tree/skeleton/shell

5 (a) A: Bevel gears
(1)

B: Worm and worm wheel
(1)
[2]
(b) Change axis through $90 \%$ change direction of rotation
$6 \quad V=I R$
$R=V / I=(9-2) / 0.01(1)$
$R=7 / 0.01$ (1)
$R=700 \Omega(1)$

7


Gusset plate(s) shown (1), framework shown (1)

81 Linear
2 Oscillating

9 Any one reason from the following list:

- plastics are good insulators
- plastics are suitable for injection moulding or vacuum forming processes, both of which are used for case manufacture
- plastics are available in different colours so the case colour can be changed quickly, most plastics can be recycled after use
- the waste from manufacture can be recycled.

10 A: 1st order
e.g. See-saw
[2]
B: $\begin{aligned} & \text { 3rd order } \\ & \text { e.g. Fishing rod }\end{aligned}$
[2]

11

| Letter from diagram | Building component |
| :---: | :--- |
| C | Cantilever beam |
| B | Tie (Member in tension) |
| A | Strut (Member in compression) |
| D | Simply supported beam |

$4 \times(1)$
[Total marks: 25]

## Section B

12 (a) Any three stages from the following list:

- Trigger pin (2) goes low and circuit is triggered
- C1 charges
- LED switches on
- C1 discharges during timing period
- LED switches off.
(b) The time delay is changed by altering the value of $\mathbf{C 1}$ or $\mathbf{R 2}$.
(c) R3 is a current limiting (1) resistor for the LED (1).
(d) Name:

Reason for selection: Momentary action (1)
Cannot stick 'on' (1)
Easy to operate (1)
(e) (i) RLA1 is a relay (SPDT).

Interfaces (1) between low current and high current circuits (1)
allows high power devices to be controlled by low power processors (1)
(ii) D1 is a diode

To protect the transistor (1) from back emf (1)
(f) (i) Gate 1 is an AND gate. (1)

Gate $\mathbf{2}$ is a NAND gate. (1)

$$
2 \times(1)
$$

[2]
(ii)
correct signals are logic 1

(iii) Segments for number two are $\mathbf{a}, \mathbf{b}, \mathbf{g}, \mathbf{e}, \mathbf{d}$ in any order.

Accept responses that show the segments shaded as below.

(iv) Modelling can be carried out using:

- real components (1) on a breadboard (1)
- simulated components (1) on simulation software (1)
$2 \times(1)$ mark for clear description.

13 (a) (i) Static loading:
A fixed value load (1) that does not move (1)

## Example:

Roof tiles on the truss (1)
(ii) Dynamic loading:

A variable value load (1) that is moving (1)

## Example:

Builder walking about on roof/wind blowing against roof (1)
(b) Triangulation (1) promotes rigidity (1)
(c) $L+R=100 \mathrm{kN}$
$R \times S=S / 2 \times 100$
$2 R \times 2 S=S \times 100$
$2 R=S / 2 S \times 100$
$R=100 / 2=50 \mathrm{kN}$
$L=100 \mathrm{kN}-50 \mathrm{kN}=50 \mathrm{kN}$
(d)


Application to structural cantilever beam member (2)
(e)


The web of the $\mathbf{I}$ beam resists shear (1), the flanges resist bending (1) Clear drawing (1)
(f) (i) A Plastic region

B Elastic region
C Break point/Fracture point/Failure point
(ii) Strain $=$ change in length $/$ original length

Change in length $=$ strain $\times$ original length
Change in length $=5 \times 10^{-3} \times 300$
Change in length $=1.5 \mathrm{~mm}$
New length $=300+1.5=301.5 \mathrm{~mm}$
(Correct answer with no working 4 marks.)
[Total marks: 25]

14 (a) Increase the speed (1) as driver pulley is bigger than driven (1)
[2]
(b) The direction is the same (1) as the driver due to belt drive (1)
[2]
(c) $\mathrm{VR}=$ Diameter Driven/Diameter Driver (1)
$\mathrm{VR}=20 \mathrm{~mm} / 40 \mathrm{~mm}=0.5$ (1)
$V R=$ Speed Driver/Speed of driven
Speed Driven $=$ Speed driver/VR $=150 \mathrm{rpm} / 0.5=300 \mathrm{rpm}$ (1)
[3]
(d) (i) Drilling machine/Lathe
(ii) To improve grip (1) to improve location (1)

Allow marks for other valid points.
$2 \times(1)$
[2]
(iii) To allow speeds (1) to be varied (1) without having to change the motor speed (1)

$$
3 \times(1)
$$

(e) (i)


$$
2 \times(1)
$$

(ii) Fishing reel/ratchet screwdriver/shaping machine
(f) (i)
(1)
(1)


$$
2 \times(1)
$$

(ii) Motor car engine
(iii) During this period the follower (1) does not move up or down (1) though the cam continues to rotate (1) $3 \times(1)$
(iv)


$$
3 \times(1)
$$

