International General Certificate of Secondary Education

MARK SCHEME
MAXIMUM MARK: 50
SYLLABUS/COMPONENT: 0445/04
DESIGN AND TECHNOLOGY
Systems and Control

Section A

2

$$
2 \times(1) \quad[2]
$$

3 Less slip/Positive drive
4 Tree/skeleton/shell
5 (a) A: Bevel gears
B: Worm and worm wheel
(b) Change axis through 90% change direction of rotation
$6 \quad V=I R$
$R=V / I=(9-2) / 0.01$ (1)
$R=7 / 0.01$ (1)
$R=700 \Omega$ (1)

7

81 Linear
2 Oscillating
9 Good insulators

10 A: $1^{\text {st }}$ order
e.g. See-saw

B: $\quad 3^{\text {rd }}$. order
e.g. Fishing rod

11

Number from diagram	List of words
$\mathbf{3}$	Cantilever beam
$\mathbf{2}$	Tie (Member in tension)
$\mathbf{1}$	Strut (Member in compression)
$\mathbf{4}$	Simply supported beam

$$
4 \times(1)
$$

Total marks: [25]

Section B

12 (a) C1 charges up
LED off
(1)

C1 discharges over time period
LED on
(b) Altering the values of $C 1$ (1) and $R(1)$
(c) Reduces current flow through LED (1) thus protects it (1)
$2 \times(1) \quad$ [2]
(d) Name:

Reason for selection: Momentary action (1)
Cannot stick 'on' (1)
Easy to operate (1)
(e) (i) A: Relay

Interfaces (1) between low current and high current circuits (1) allows high power devices to be controlled by low power processors (1)
(ii) Diode

To protect 555 (1) from back emf (1)
(f) (i) $\quad \mathbf{P}:$ And (1)

Q : Nand (1)
$2 \times(1)$
[2]
(ii)

(iii) Climate control system/lift control system/washing machine
(iv) Computer simulations/loctronics kits/breadboard with series of switches

13 (a) Static loading:
A fixed value load (1) that does not move (1)

Example:

Roof tiles on the truss

Dynamic loading:

A fixed value load (1) that is moving (1)

Example:

Builder walking about on roof/wind blowing against roof
(b) Triangulation (1) promotes rigidity (1)
(c) $L+R=100 \mathrm{kN}$
thus moments at L
$R \times S=S / 2 \times 100 \mathrm{kN}$
$R=100 \mathrm{kN} / 2=50 \mathrm{kN}$
$50 \mathrm{kN}+\mathrm{L}=100 \mathrm{~K} \mathrm{~N}$
$\mathrm{L}=100 \mathrm{kN}-50 \mathrm{kN}=50 \mathrm{kN}$
(d)

Principal (2)

(e)

(f) (i) A Plastic region

B Elastic region
C Break point/Fracture point/Failure point
[1]
(ii) $\mathrm{E}=$ Stress/Strain
$200,000,000 \mathrm{~N} / \mathrm{m}^{2} \times 10^{-6}(1)=$ Stress $/ 0.001$ (1)
200/0.01 $=$ Stress $=200(1) \mathrm{K} \mathrm{N} / \mathrm{m}^{2}(1)$

$$
4 \times(1)
$$

[4]
Total marks: [25]
14 (a) Increase the speed (1) as driver pulley is bigger than driven (1)
(b) The direction is the same (1) as the driver due to belt drive (1)
(c) $\quad \mathrm{VR}=$ Diameter Driven/Diameter Driver (1)
$\mathrm{VR}=20 \mathrm{~mm} / 40 \mathrm{~mm}=0.5$ (1)
VR = Speed Driver/Speed of driven
Speed Driven $=$ Speed driver/VR = $150 \mathrm{rpm} / 0.5=300 \mathrm{rpm}(1)$
(d) (i) Drilling machine/Lathe
(ii) To improve grip (1) to improve location (1)
$2 \times(1)$
(iii) To allow speeds for the drill chuck (1) to be varied (1) without having to change the motor speed (1)
(e) (i)
(1)

$2 \times(1) \quad$ [2]
(ii) Fishing reel/ratchet screwdriver/shaping machine
(f) (i)

(ii) Motor car engine
(iii) During this period the follower (1) does not move up or down (1) though the cam continues to rotate (1)
(iv)

Crank (1)

$3 \times(1)$

BLANK PAGE

