CO-ORDINATED SCIENCES

Paper 4 Theory (Extended)
MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks
1(a)	blood travels through the heart twice for each circuit of the body; low-pressure circulation to the lungs and high-pressure circulation to the body tissues ;	2
1(b)	$\begin{aligned} & \mathbf{B} \\ & \mathbf{G} \\ & \mathbf{C} \\ & \mathbf{F} \end{aligned}$	4
1(c)(i)	coronary arteries ;	1
1(c)(ii)	stop smoking; exercise ; eat less fatty / salty food; reduce stress;	max 2

Question	Answer	Marks
2(a)(i)	A and B; from Groups I and II / have only 1 or 2 electrons in outer shell ; are metals / have metallic properties ;	3
2(a)(ii)	D ; complete outer shell / is a noble gas / is very stable / does not need to bond / does not need, to gain / lose / share electrons ;	2
2(a)(iii)	ionic / electrovalent ; metal bonding with non-metal ;	2
2(b)	arrangement of atoms in bronze is less regular / disrupted by atoms of different size ; layers of atoms slide more easily in copper/do not slide so easily in bronze ;	2

PUBLISHED

Question	Answer	Marks
3(a)(i)	iron ;	1
3(a)(ii)	uranium ;	1
3(a)(iii)	iron ;	1
3(b)(i)	temperature at which all of a liquid turns to a gas ;	1
3(b)(ii)	latent heat of vapourisation; to break bonds / to overcome attractive forces ; between the molecules / intermolecular bonds; to increase potential energy of the molecules ;	max 2
3(c)	${ }_{30}^{64} \mathrm{Zn}$;; ${ }_{-1}^{0} \beta$;	3
3(d)(i)	$\begin{aligned} & \text { density }=\text { mass } / \text { volume or } 44.8 / 5.0 \text {; } \\ & =8.96\left(\mathrm{~g} / \mathrm{cm}^{3}\right) ; \end{aligned}$	2
3(d)(ii)	0.448 (N) ;	1
3(d)(iii)	$\begin{aligned} & \text { pressure }=\text { force / area or } 0.448 / 0.01 \text {; } \\ & =44.8\left(\mathrm{~N} / \mathrm{m}^{2}\right) ; \end{aligned}$	2

Question	Answer	Marks
$4(\mathrm{a})$	$\mathrm{B}, \mathrm{b}, \mathrm{b}, \mathrm{b} ;$ $\mathrm{Bb}, \mathrm{Bb}, \mathrm{bb}, \mathrm{bb} ;$ brown, brown, red, red ; $1: 1 ;$	4
4(b)(i)	a change in a gene / chromosome ;	$\mathbf{1}$
4(b)(ii)	spotted crabs less at risk from predation ; spotted crabs more likely to survive and breed; ref to natural selection;	max 2

Question	Answer	Marks
5(a)(i)	shaded area on the left hand side of the shoot after three days;	1
5(a)(ii)	positive phototropism ;	1
5(b)	auxins cause cells to increase in, size / elongate / grow ; auxins, move / diffuse, away from light ; ref to uneven growth;	$\max 2$
5(c)	$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \underset{\text { chlorophyll }}{\stackrel{\text { light }}{ }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} ; ;$	2
5(d)	increase in, size - no mark increase in dry mass; increase in cell, number / size ; ref to permanent ;	$\max 2$
5(e)	glucose converted to sucrose ; ref to translocation ; in phloem ;	$\max 2$

Question	Answer	Marks
6(a)(i)	fractional distillation ; (catalytic / thermal) cracking ;	2
6(a)(ii)	high temperature ; high pressure ; catalyst ;	3
6(a)(iii)	linear chain of 4 carbons ; 2 H on each C ; all single bonds;	max 2
6(b)(i)	any reasonable cause of paint removal ; causing steel to, be exposed to /react with, oxygen / owtte ; causing steel to, be exposed to / react with, water / owtte;	
6(b)(ii)	protection continues when (zinc) layer damaged / reference to sacrificial protection ;	

Question	Answer	Marks
$7(\mathrm{a})($ (i)	piano ; highest frequency ;	$\mathbf{2}$
7 (a)(ii)	piano ; lowest frequency ;	$\mathbf{2}$
7 (b)(i)	$1 / R_{T}=1 / R_{1}+1 / R_{2}$ or working ; $7.5(\Omega) ;$	$\mathbf{2}$
$7(b)($ ii)	large surface area - heat can be lost quicker from the surface / for better, conduction / convection / radiation ; black (fins) - black is a good emitter (of radiation) ; metal (fins) - metal is a good conductor (of heat) ;	max 2

PUBLISHED

Question	Answer	Marks
8(a)(i)	\mathbf{X} anther ; Y stigma;	2
8(a)(ii)	petals larger / brightly coloured; pollen larger / fewer/ rougher surface ;	2
8(b)	meiosis ;	1
8(c)	advantage genetic variation ; disadvantage two parents needed ; fertilisation is random / mutations can occur ; take more, time / energy ;	max 2
8(d)	attach to animals, coat/fur / hair ; eaten by animals, dispersed in faeces ; AVP ;	max 2

Question	Answer	Marks
9(a)	(P) carbon dioxide turns limewater milky ; carbon is more reactive than copper so can, remove / take, oxygen from copper oxide / owtte ; carbon is less reactive than magnesium so cannot, remove / take, oxygen from magnesium oxide / owtte ;	3
9(b)(i)	solid reacts and dissolves gas given off magnesium \checkmark \checkmark magnesium carbonate \checkmark \checkmark magnesium oxide \checkmark ;	3
9(b)(ii)	copper chloride + carbon dioxide + water ;;	2
9(c)(i)	16.25 (g) ;	1
9(c)(ii)	iron $5.60 \div 56=0.1$ moles ; chlorine $10.65 \div 35.5=0.3$ moles ;	2
9(c)(iii)	$\mathrm{FeCl}_{3} ;$	1

Question	Answer	Marks
10(a)	mobile ions, carry charge / produce a current ; ions, are fixed / aren't mobile, in a crystal ;	2
10(b)	anode product cathode product sodium chloride aqueous sodium chloride sulfuric acid chlorine aqueous chlorine oxygen hydrogen; sodium; hydrogen ;	3
10(c)(i)	idea that there is only an electron difference / electrons have, no / negligible, mass ;	1
10(c)(ii)	chloride / particle M, has a negative charge / more electrons than protons ; so is attracted to the positive anode / idea that opposite charges attract ;	2
10(c)(iii)	one shared pair and all non-bonding electrons shown ;	1

Question	Answer	Marks
11 (a)(i)	diagonal line from 0,$70 ;$ to 60,$0 ;$	$\mathbf{2}$
11 (a)(ii)	acceleration $=$ change in speed $/$ time $/ 70 / 60 ;$ $=1.17\left(\mathrm{~m} / \mathrm{s}^{2}\right) ;$	$\mathbf{2}$
$11(\mathrm{a})($ iii $)$	$\mathrm{KE}=1 / 2 \mathrm{mv}^{2} / 1 / 2 \times 350000 \times 70 \times 70 ;$ $=85750000(\mathrm{~J}) ;$	$\mathbf{2}$
$11(\mathrm{~b})$	distance $=$ speed \times time or working ; $=\left(3 \times 10^{8} \times 3.3 \times 10^{-5}\right) / 2=$ OR $\left(3.3 \times 10^{-5} / 2\right) \times 3 \times 10^{8} ;$ distance $=4950(\mathrm{~m}) ;$	$\mathbf{3}$

Question	Answer	Marks
12(a)(i)	$62-70\left(\mathrm{~cm}^{3}\right) ;$	1
12(a)(ii)	respiration enzymes denatured / yeast killed ;	$\mathbf{1}$
12(a)(iii)	increase / more, food / concentration of sugar mixture/increase / more, initial number of yeast ;	$\mathbf{1}$
12(b)	alcohol, produced in anaerobic respiration in yeast/lactic acid is produced in anaerobic respiration in animals ;	
12(c)	brewing / beer making / making alcoholic drinks ;	$\mathbf{1}$

Question	Answer	Marks
$13(\mathrm{a})(\mathrm{i})$	$\mathrm{P} / \mathrm{V}=I ;$ $(2.5 \times 1000) / 240=10.4 ;$	$\mathbf{2}$
$13(\mathrm{a})(\mathrm{ii})$	must be higher than $10.4 /$ not 10 A fuse, or else it will blow (with normal current) ; not 30 A fuse if there is a fault too much current will pass through / causes damage to washing machine / causes fire ;	
$13(\mathrm{~b})$	electromagnet / magnetic field created around solenoid coil ; soft iron (armature), attracted to magnet / turns, and closes contacts ;	$\mathbf{2}$
13(c)(i)	compression correctly labelled ; rarefaction correctly labelled ;	$\mathbf{2}$
$13(c)(i i)$	one wavelength correctly identified ;	$\mathbf{1}$

