Cambridge International Examinations
 Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/21
Paper 2 Multiple Choice (Extended)
May/June 2017
45 minutes
Additional Materials:
Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.
There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.
Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 16.
Electronic calculators may be used.

1 Which structural feature is found in a plant cell but not in an animal cell?
A cell membrane
B cell wall
C cytoplasm
D nucleus

2 What is the order of decreasing diameter of the structures found in the breathing system?
A alveoli \rightarrow bronchi \rightarrow capillaries
B alveoli \rightarrow capillaries \rightarrow bronchi
C bronchi \rightarrow alveoli \rightarrow capillaries
D capillaries \rightarrow bronchi \rightarrow alveoli

3 The graph shows the change in blood glucose level in a healthy man.
Which arrow identifies when the pancreas first starts to release glucagon?

4 In a plant, what leads to offspring that are identical to the parent?
A asexual reproduction
B insect pollination
C seed germination
D sexual reproduction

5 A frightened animal may need to run away suddenly.
Which substance is released to stimulate an increase in blood glucose concentration?
A adrenaline
B haemoglobin
C plasma
D platelets

6 What is the function of microorganisms in yoghurt making?
A They make the sugar in milk become solid.
B They produce lactic acid.
C They raise the pH of the mixture.
D They reduce the fat content of the milk.

7 What is an ecosystem?
A a chart showing the flow of energy from one organism to another
B a diagram giving the energy level of an organism in its environment
C a network of interconnected organisms
D a unit containing all of the organisms and their environment

8 What is meant by osmosis?
A The diffusion of water molecules from a region of their higher concentration to a region of their lower concentration as a result of their random movement.

B The diffusion of water molecules from a region of their higher concentration to a region of their lower concentration through a partially permeable membrane.

C The diffusion of water molecules from a region of their lower concentration to a region of their higher concentration as a result of their random movement.

D The diffusion of water molecules from a region of their lower concentration to a region of their higher concentration through a partially permeable membrane.

9 What is meant by the term homozygous?
A alleles that determine the appearance of an organism
B an allele that is effective only when there is no dominant allele present
C an individual with two alleles of the same gene that are identical
D an individual with two different alleles of the same gene

10 The ribs are lowered as we breathe out.
Which characteristic of living organisms does this illustrate?
A growth
B movement
C respiration
D sensitivity

11 Some human white blood cells produce antibodies.
What is another function of white blood cells?
A enzyme secretion
B hormone production
C peristalsis
D phagocytosis

12 A scientist took a single living cheek cell from each of 30 different people. 15 of these people were male and 15 were female. He stained each cell so that the sex chromosomes could be observed.

How many X chromosomes would the scientist observe?
A 15
B 30
C 45
D 60

13 Which line shows how the oxygen concentration of the water changes after excess fertiliser has entered a stream?

14 Which statement describes how magnesium atoms and nitrogen atoms combine to form magnesium nitride, $\mathrm{Mg}_{3} \mathrm{~N}_{2}$?

A Each magnesium atom loses three electrons and each nitrogen atom gains two electrons.
B Each magnesium atom loses two electrons and each nitrogen atom gains three electrons.
C Each nitrogen atom loses three electrons and each magnesium atom gains two electrons.
D Each nitrogen atom loses two electrons and each magnesium atom gains three electrons.

15 How many atoms of metals and of non-metals are shown in the formula $\mathrm{Na}_{2} \mathrm{SO}_{4}$?

	atoms of metals	atoms of non-metals
A	1	1
B	1	2
C	2	4
D	2	5

16 Aqueous copper(II) sulfate is electrolysed using carbon electrodes.
What is produced at each electrode?

	anode	cathode
A	copper	oxygen
B	hydrogen	copper
C	oxygen	copper
D	oxygen	hydrogen

17 Aqueous sodium thiosulfate reacts with dilute hydrochloric acid.
Increasing the concentration of sodium thiosulfate increases the rate of reaction.
Which statement explains this observation?
A The particles are closer together and collide more frequently.
B The particles are closer together and collide with more energy.
C The particles have a greater surface area and collide more frequently.
D The particles have more energy and collide more frequently.

18 Aluminium reacts with iron(III) oxide, forming iron.
The equation for this reaction is shown.
aluminium + iron(III) oxide \rightarrow iron + aluminium oxide
Which statement explains why this is a redox reaction?
A Aluminium gains oxygen and iron loses oxygen.
B Aluminium is reduced and iron(III) oxide is oxidised.
C Aluminium oxide is oxidised and iron is reduced.
D Iron gains oxygen and aluminium loses oxygen.

19 The pH of water changes when ammonia is bubbled into it.
What happens to the pH and why?

	pH	ammonia is
A	decreases	acidic
B	decreases	alkaline
C	increases	acidic
D	increases	alkaline

20 In which industrial process is sulfuric acid made?
A the catalytic cracking of alkanes
B the Contact process
C the production of iron
D the thermal decomposition of limestone

21 Part of the Periodic Table is shown.

Which description is correct?
A W is a soft solid at room temperature. It has a low melting point and it can act as a catalyst.
B X is a solid at room temperature. It has a high melting point and it can act as a catalyst.
C Y is a solid at room temperature. It forms a coloured vapour and it displaces iodide ions.
D $\quad \mathbf{Z}$ is a gas at room temperature. It is very reactive and it has a low boiling point.

22 Which element is used to extract some metals from their ores?
A carbon
B copper
C iron
D nitrogen

23 Four solutions are tested with Universal Indicator paper and with anhydrous copper(II) sulfate.
Which row shows the observations for pure water?

	Universal Indicator paper	anhydrous copper(II) sulfate
A	turns blue	turns blue
B	turns blue	turns white
C	turns green	turns blue
D	turns green	turns white

24 The Haber process is used to make ammonia.
Which statement about the Haber process is not correct?
A A vanadium (V) oxide catalyst is used.
B The nitrogen used is obtained from the air.
C The pressure used is 200 atmospheres.
D The temperature used is $450^{\circ} \mathrm{C}$.

25 Why do farmers add lime to soil?
A It acts as a fertiliser.
B It adds nitrogen to the soil.
C It decreases the pH of the soil.
D It increases the pH of the soil.

26 Which substance is not a product of an addition reaction of ethene?
A

27 Which statement about a protein is not correct?
A It can be hydrolysed by acids and by alkalis.
B It is a natural macromolecule.
C It is made from only one monomer.
D It possesses the same amide linkages as nylon.

28 The diagram is a speed-time graph for a moving object.

What is the distance travelled by the object in 4.0 s ?
A 30 m
B 40 m
C 50 m
D 80 m

29 What is the name given to the gravitational force of the Earth on an object?
A mass
B power
C volume
D weight

30 A spring of unstretched length 5.0 cm has a spring constant k of $20 \mathrm{~N} / \mathrm{cm}$. A load is suspended from the spring and its new length is 8.5 cm .

What is the weight of the load?
A $\quad 0.70 \mathrm{~N}$
B $\quad 1.7 \mathrm{~N}$
C 70 N
D 170 N

31 The list contains three energy resources, P, Q and R.
P geothermal energy from hot rocks
Q nuclear fission in reactors
R sunlight on solar panels
Which of these resources are renewable?
A P, Q and R
B P and Q only
C P and R only
D Q and R only

32 A gas trapped in a cylinder has volume V. The pressure of the gas increases from P to $4 P$ at constant temperature.

What is the new volume of the gas?
A 0.25 V
B 0.50 V
C 2 V
D $4 V$

33 Bread can be cooked by placing it below a heating element.
heating element

Which process transfers thermal energy from the heating element to the bread?
A conduction
B convection
C evaporation
D radiation

34 Every 10 s a drop of water falls into a pool. The drops cause a circular wave to spread over the surface of the pool at a speed of $20 \mathrm{~cm} / \mathrm{s}$.

What is the wavelength of the wave?
A 0.50 cm
B $\quad 2.0 \mathrm{~cm}$
C 10 cm
D 200 cm

35 Which ray diagram represents the formation of a virtual image I of an object O ?

36 Astronaut 1 uses a hammer to mend a satellite in space. Astronaut 2 is nearby. There is no air in space.

What does astronaut 2 hear compared with the sound heard if they were working on Earth?
A a louder sound
B a quieter sound
C a sound of the same loudness
D no sound at all

37 A battery is connected to an ammeter and a resistor of resistance $1.5 \times 10^{3} \Omega$.
The reading on the ammeter is 3.0 mA .

What is the potential difference (p.d.) across the battery?
A 0.50 V
B 1.5 V
C 2.0 V
D 4.5 V

38 Two identical resistors, each of resistance R, are connected as shown.

What is their effective resistance?
A $\frac{R}{4}$
B $\frac{R}{2}$
C $2 R$
D $4 R$

39 Electricity from a power station is to be transmitted over a large distance. A 100% efficient transformer is used near to the power station. This transformer reduces the amount of energy that is wasted thermally in the transmission cables.

How does the transformer reduce the energy loss?
A It decreases the power transmitted so the current and the voltage are both larger.
B It decreases the power transmitted so the current and the voltage are both smaller.
C It increases the current so the voltage is smaller.
D It increases the voltage so the current is smaller.

40 Which row compares the number of protons and the number of neutrons in atoms of different isotopes of an element?

	number of protons	number of neutrons
A	different	different
B	different	the same
C	the same	different
D	the same	the same

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

©	The Periodic Table of Elements																	
而	Group																	
$\begin{aligned} & 0 \\ & N \\ & 0 \end{aligned}$	I	II											III	IV	V	VI	VII	VIII
$\stackrel{\rightharpoonup}{\nu}$					Key			1 H hydrogen 1										$\begin{gathered} 2 \\ \mathrm{He} \\ \text { helium } \\ 4 \end{gathered}$
	$\begin{gathered} 3 \\ \mathrm{Li} \\ \substack{\text { lithium } \\ 7} \end{gathered}$	4 Be beryllium 9			mic num ic sy name ve atomic								$\begin{gathered} \hline 5 \\ \mathrm{~B} \\ \text { boron } \\ 11 \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{C} \\ \text { carbon } \\ 12 \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ \substack{\text { nitrogen } \\ 14} \end{gathered}$	$\begin{gathered} 8 \\ \mathrm{O} \\ \text { oxygen } \\ 16 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ \substack{\text { fluorine } \\ 19} \end{gathered}$	10 Ne neon 20
		12 Mg magnesium 24												$\begin{gathered} \hline 14 \\ \mathrm{Si} \\ \substack{\text { silicon } \\ 28} \end{gathered}$	15 P $\substack{\text { phosphorus } \\ 31}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ \substack{\text { sulfur } \\ 32} \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ \text { chlorine } \\ 35.5 \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ \text { argon } \\ 40 \end{gathered}$
	19 K potassium 39	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { calcium } \\ 40 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \substack{\text { scandium } \\ 45} \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \text { titanium } \\ 48 \end{gathered}$	23Vvanadium 51	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { chromium } \\ 52 \end{gathered}$	25 Mn manganese 55	$\begin{gathered} 26 \\ \text { Fe } \\ \text { iron } \\ 56 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { cobalt } \\ 59 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { nickel } \\ 59 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { copper } \\ 64 \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ \text { zinc } \\ 65 \end{gathered}$	31 Ga gallium 70	32 Ge germanium 73	33 As arsenic 75	34 Se selenium 79	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { bromine } \\ 80 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Krypton} \\ 84 \end{gathered}$
$\begin{aligned} & \text { O} \\ & M \\ & \stackrel{1}{N} \end{aligned}$	37 Rb rubidium 85	38 Sr strontium 88	$\begin{gathered} 39 \\ \mathrm{Y} \\ \text { yytrium } \\ 89 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ \substack{\text { zirconium } \\ 91} \end{gathered}$	41 Nb niobium 93	42 Mo molybdenum 96	43 Tc technetium \qquad	$\underset{\substack{44 \\ \text { ruthenium } \\ 101}}{ }$	$\begin{gathered} 45 \\ \mathrm{Rh} \\ \text { rhodium } \\ 103 \end{gathered}$	46Pdpalladium 106	$\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { silver } \\ 108 \end{gathered}$	48 $\substack{\text { cadmium } \\ 112}$	$\begin{gathered} 49 \\ \text { In } \\ \text { indium } \\ 115 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ \begin{array}{c} \text { tin } \\ 119 \end{array} \end{gathered}$	$\substack{51 \\ \text { antimony } \\ 122}$ Sb^{2}	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { tellurium } \\ 128 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { iodine } \\ 127 \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ \text { xenon } \\ 131 \end{gathered}$
$\underset{\stackrel{\rightharpoonup}{\vdots}}{\stackrel{\rightharpoonup}{\vdots}}$	$\begin{gathered} 55 \\ \mathrm{CS} \\ \text { caesium } \\ 133 \end{gathered}$	56 Ba barium 137	57-71 lanthanoids	$\begin{gathered} 72 \\ \mathrm{Hf} \\ \text { hafnium } \\ 178 \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ \substack{\text { tantalum } \\ 181} \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { tungsten } \\ 184 \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{Re} \\ \text { rhenium } \\ 186 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ \text { osmium } \\ 190 \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ \text { iridium } \\ 192 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { platinum } \\ 195 \end{gathered}$	79 Au gold 197	$\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { mercury } \\ 201 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{~T} l \\ \text { thallium } \\ 204 \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { lead } \\ 207 \\ \hline \end{gathered}$	83 Bi bismuth 209	84 Po polonium -	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$ astatine $-$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ \text { radon } \\ - \end{gathered}$
	87 Fr francium -	88 Ra radium -	$\begin{aligned} & \text { 89-103 } \\ & \text { actinoids } \end{aligned}$	rutherfordium -	105 Db dubnium -	106 Sg seaborgium -	$\begin{aligned} & \hline 107 \\ & \mathrm{Bh} \end{aligned}$ bohrium -	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$ hassium	109 Mt meitnerium	110 Ds darmstadtium -	111 Rg roentgenium -					116 $L V$ livermorium -		

lanthanoids
actinoids

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\underset{\text { lanthanum }}{\text { La }}$ 139	Ce cerium 140	Pr praseodymium 141	$\underset{\substack{\text { neodymium } \\ 144}}{\mathrm{Nd}}$ 144	Pm promethium	Sm samarium 150	Eu europium 152	Gd gadolinium 157	Tb terbium 159	$\underset{\substack{\text { dysprosium } \\ 163}}{\text { Dy }}$	Ho holmium 165	$\begin{gathered} \text { Er } \\ \text { erbium } \\ 167 \end{gathered}$	Tm thulium 169	Yb ytterbium 173	Lu lutetium 175
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac actinium	Th thorium 232	Pa protactinium 231	$\underset{\substack{\text { uranium } \\ 238}}{\bigcup}$	Np neptunium	Pu plutonium	Am americium	Cm curium	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr lawrencium

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

