Cambridge International Examinations
 Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/22
Paper 2 Multiple Choice (Extended)
May/June 2017
45 minutes
Additional Materials:
Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.
There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.
Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 16.
Electronic calculators may be used.

1 Which structural feature is found in a plant cell but not in an animal cell?
A cell membrane
B cell wall
C cytoplasm
D nucleus

2 What is an effect of tar on the gas exchange system?
A paralysis of the cilia
B speeds up the build-up of cholesterol
C stimulates the production of adrenaline
D stops oxygen combining with haemoglobin

3 Which characteristic of living organisms involves chemical reactions that break down nutrient molecules to release energy?

A excretion
B nutrition
C reproduction
D respiration

4 In a plant, what leads to offspring that are identical to the parent?
A asexual reproduction
B insect pollination
C seed germination
D sexual reproduction

5 Which statement about all food chains is correct?
A All the carnivores are producers.
B All the consumers are carnivores.
C All the herbivores are consumers.
D All the producers are herbivores.

6 What is the function of microorganisms in yoghurt making?
A They make the sugar in milk become solid.
B They produce lactic acid.
C They raise the pH of the mixture.
D They reduce the fat content of the milk.

7 The diagram shows stages in the development of a fertilised zygote.
Which stage becomes implanted in the wall of the uterus?
A
B

C

8 The diagram shows a section through human skin.
Which structure undergoes vasodilation to increase heat loss from the skin?

9 The list shows some effects of human activities.
P global warming
Q loss of fossil fuels
R water pollution
S flooding
Which effects can be the result of deforestation?
A P and Q
B P and S
C Q and R
D R and S

10 In plants, water is absorbed from the soil into root hair cells.
Why does this occur?
A The concentration of salts is higher in the soil than inside the cells.
B The concentration of water is lower in the soil than inside the cells.
C The water potential of the soil is higher than inside the cells.
D The water potential of the soil is lower than inside the cells.

11 Much of the internal surface of the human small intestine is covered with villi.
What is the function of villi?
A excretion of waste into the intestine
B secretion of enzymes into the intestine
C to improve blood circulation in the intestine walls
D to increase the internal surface area of the intestine

12 A scientist took a single living cheek cell from each of 30 different people. 15 of these people were male and 15 were female. He stained each cell so that the sex chromosomes could be observed.

How many X chromosomes would the scientist observe?
A 15
B 30
C 45
D 60

13 The diagram shows a section through the front of the eye and a front view of the eye.

Which muscles contract when viewing a distant object in dim light?
A Pand R
B Ponly
C Q and R
D Q only

14 The dyes in a sweet are separated using chromatography.

Which dyes are present in the sweet?
A 1 and 2
B 1 and 3
C 2 and 4
D 3 and 4

15 Which covalent molecule contains the most shared pairs of electrons?
A CH_{4}
B CO_{2}
C $\mathrm{C}_{2} \mathrm{H}_{4}$
D NH_{3}

16 How many atoms of metals and of non-metals are shown in the formula $\mathrm{Na}_{2} \mathrm{SO}_{4}$?

	atoms of metals	atoms of non-metals
A	1	1
B	1	2
C	2	4
D	2	5

17 Molten zinc bromide and aqueous zinc bromide are electrolysed using inert electrodes. In which rows do the electrode products match the electrolyte?

	electrolyte	cathode product	anode product
1	aqueous zinc bromide	hydrogen	bromine
2	aqueous zinc bromide	zinc	bromine
3	molten zinc bromide	hydrogen	bromine
4	molten zinc bromide	zinc	bromine

A 1 and 3
B 1 and 4
C 2 and 3
D 2 and 4

18 Aqueous sodium thiosulfate reacts with dilute hydrochloric acid. Increasing the concentration of sodium thiosulfate increases the rate of reaction.

Which statement explains this observation?
A The particles are closer together and collide more frequently.
B The particles are closer together and collide with more energy.
C The particles have a greater surface area and collide more frequently.
D The particles have more energy and collide more frequently.

19 The pH of water changes when ammonia is bubbled into it.
What happens to the pH and why?

	pH	ammonia is
A	decreases	acidic
B	decreases	alkaline
C	increases	acidic
D	increases	alkaline

20 Some properties of gas Y are listed.
1 It burns to produce only one product.
2 It has no effect on damp litmus paper.
3 It is a covalent compound containing two different elements.
What is gas Y ?
A carbon dioxide
B carbon monoxide
C chlorine
D methane

21 Element X is in Group II of the Periodic Table.
Which row describes X ?

	type of element	number of outer-shell electrons
A	metal	2
B	metal	6
C	non-metal	2
D	non-metal	6

22 Which metal is extracted from its ore by heating with carbon?
A copper
B magnesium
C potassium
D sodium

23 Which statement explains how oxides of nitrogen are formed in a car engine?
A Nitrogen in the air reacts with the fuel.
B Oxygen and nitrogen in the air react together.
C Oxygen in the air reacts with nitrogen impurities in the fuel.
D Oxygen in the air reacts with the fuel.

24 The diagram shows an experiment about the rusting of iron.

The apparatus is left for one week.
After one week the water level has risen up the test-tube by \qquad
\qquad because the \qquad .2. in the air reacts with the iron.

Which row completes gaps 1 and 2?

	1	2
A	20%	nitrogen
B	20%	oxygen
C	79%	nitrogen
D	79%	oxygen

25 Why do farmers add lime to soil?
A It acts as a fertiliser.
B It adds nitrogen to the soil.
C It decreases the pH of the soil.
D It increases the pH of the soil.

26 Which structure represents a molecule of butane?
A

D

27 Collagen is a protein.
Boiling collagen with dilute acid produces amino acids.
What is the name of this process?
A condensation
B cracking
C hydrolysis
D polymerisation

28 The diagram is a speed-time graph for a moving object.

What is the distance travelled by the object in 4.0 s ?
A 30 m
B 40 m
C 50 m
D 80 m

29 On Earth an astronaut has a mass of 80 kg and weighs 800 N .
In deep space the gravitational field is very weak.
What is the mass and what is the weight of the astronaut in deep space?

	mass $/ \mathrm{kg}$	weight/ N
A	less than 80	less than 800
B	less than 80	800
C	80	less than 800
D	80	800

30 A spring of unstretched length 5.0 cm has a spring constant k of $20 \mathrm{~N} / \mathrm{cm}$. A load is suspended from the spring and its new length is 8.5 cm .

What is the weight of the load?
A $\quad 0.70 \mathrm{~N}$
B $\quad 1.7 \mathrm{~N}$
C 70 N
D 170 N

31 A body of mass m moving with speed v has kinetic energy E.
A second body, also of mass m, moves with speed $\frac{v}{2}$.
What is the kinetic energy of the second body?
A $\frac{E}{4}$
B $\frac{E}{2}$
C E
D 2E

32 A gas is trapped in a sealed container of constant volume.
The gas molecules collide with the container walls to produce a pressure.
The temperature of the gas increases. This causes the pressure of the gas to increase.
Which row explains why the pressure increases, in terms of the gas molecules?

	speed of molecules	number of collisions each second
A	increases	increases
B	increases	remains constant
C	remains constant	increases
D	remains constant	remains constant

33 Gardeners protect plants from low temperatures by leaving them in a greenhouse with large containers of water.

During the day the water temperature increases very little and at night it decreases very little.
Which property explains why this change in temperature is very small?
A The water has a high thermal capacity.
B The water has a low thermal capacity.
C Water is a good thermal conductor.
D Water is a poor thermal conductor.

34 Bread can be cooked by placing it below a heating element.

Which process transfers thermal energy from the heating element to the bread?
A conduction
B convection
C evaporation
D radiation

35 The diagram shows a ray of light in air entering and passing through a glass block. Which labelled arrow shows the direction of the ray after it leaves the glass block?

36 Astronaut 1 uses a hammer to mend a satellite in space. Astronaut 2 is nearby. There is no air in space.

What does astronaut 2 hear compared with the sound heard if they were working on Earth?
A a louder sound
B a quieter sound
C a sound of the same loudness
D no sound at all

37 There is a current I in a resistor.
Which equation gives the charge Q passing through the resistor in time t ?
A $\quad \mathrm{Q}=\frac{I}{t}$
B $\quad Q=I \times t$
C $\quad Q=I+t$
D $Q=I-t$

38 Two identical resistors are connected in series.
Their combined resistance is 40Ω.
What is their effective resistance when connected in parallel?
A 10Ω
B 20Ω
C 40Ω
D 80Ω

39 The diagram shows a wire carrying an electric current in the direction shown. The wire is at right angles to a magnetic field that is directed into the page.

A force acts on the wire because of the current and the magnetic field.
In which labelled direction does this force act?

40 Which row compares the number of protons and the number of neutrons in atoms of different isotopes of an element?

	number of protons	number of neutrons
A	different	different
B	different	the same
C	the same	different
D	the same	the same

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

©	The Periodic Table of Elements																	
而	Group																	
$\begin{aligned} & 0 \\ & N \\ & 0 \end{aligned}$	I	II											III	IV	V	VI	VII	VIII
$\stackrel{\rightharpoonup}{\nu}$					Key													$\begin{gathered} 2 \\ \mathrm{He} \\ \text { helium } \\ 4 \end{gathered}$
	$\begin{gathered} 3 \\ \mathrm{Li} \\ \substack{\text { lithium } \\ 7} \end{gathered}$	4 Be beryllium 9			mic num ic sy name ve atomic								$\begin{gathered} \hline 5 \\ \mathrm{~B} \\ \text { boron } \\ 11 \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{C} \\ \text { carbon } \\ 12 \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ \substack{\text { nitrogen } \\ 14} \end{gathered}$	$\begin{gathered} 8 \\ \mathrm{O} \\ \text { oxygen } \\ 16 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ \substack{\text { fluorine } \\ 19} \end{gathered}$	10 Ne neon 20
		12 Mg magnesium 24												$\begin{gathered} \hline 14 \\ \mathrm{Si} \\ \substack{\text { silicon } \\ 28} \end{gathered}$	15 P $\substack{\text { phosphorus } \\ 31}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ \substack{\text { sulfur } \\ 32} \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ \text { chlorine } \\ 35.5 \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ \text { argon } \\ 40 \end{gathered}$
	19 K potassium 39	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { calcium } \\ 40 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \substack{\text { scandium } \\ 45} \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \text { titanium } \\ 48 \end{gathered}$	23Vvanadium 51	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { chromium } \\ 52 \end{gathered}$	25 Mn manganese 55	$\begin{gathered} 26 \\ \text { Fe } \\ \text { iron } \\ 56 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { cobalt } \\ 59 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { nickel } \\ 59 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { copper } \\ 64 \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ \text { zinc } \\ 65 \end{gathered}$	31 Ga gallium 70	32 Ge germanium 73	33 As arsenic 75	34 Se selenium 79	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { bromine } \\ 80 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Krypton} \\ 84 \end{gathered}$
$\begin{aligned} & \text { O} \\ & M \\ & N \\ & N \end{aligned}$	37 Rb rubidium 85	38 Sr strontium 88	$\begin{gathered} 39 \\ \mathrm{Y} \\ \text { yytrium } \\ 89 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { zirconium } \\ 91 \end{gathered}$	41 Nb niobium 93	42 Mo molybdenum 96	43 Tc technetium \qquad	$\underset{\substack{44 \\ \text { ruthenium } \\ 101}}{ }$	$\begin{gathered} 45 \\ \mathrm{Rh} \\ \text { rhodium } \\ 103 \end{gathered}$	46Pdpalladium 106	$\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { silver } \\ 108 \end{gathered}$	48 $\substack{\text { cadmium } \\ 112}$	$\begin{gathered} 49 \\ \text { In } \\ \text { indium } \\ 115 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ \begin{array}{c} \text { tin } \\ 119 \end{array} \end{gathered}$	$\substack{51 \\ \text { antimony } \\ 122}$ Sb^{2}	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { tellurium } \\ 128 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { iodine } \\ 127 \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ \text { xenon } \\ 131 \end{gathered}$
$\stackrel{N}{\stackrel{N}{\Sigma}}$	$\begin{gathered} 55 \\ \mathrm{CS} \\ \text { caesium } \\ 133 \end{gathered}$	56 Ba barium 137	57-71 lanthanoids	$\begin{gathered} 72 \\ \mathrm{Hf} \\ \text { hafnium } \\ 178 \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ \substack{\text { tantalum } \\ 181} \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { tungsten } \\ 184 \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{Re} \\ \text { rhenium } \\ 186 \end{gathered}$	76 Os $\substack{\text { osmium } \\ 190}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ \substack{\text { iridium } \\ 192} \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { platinum } \\ 195 \end{gathered}$	79 Au gold 197	$\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { mercury } \\ 201 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{~T} l \\ \text { thallium } \\ 204 \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { lead } \\ 207 \\ \hline \end{gathered}$	83 Bi bismuth 209	84 Po polonium -	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$ astatine $-$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ \text { radon } \\ - \end{gathered}$
	87 Fr francium -	88 Ra radium -	$\begin{aligned} & \text { 89-103 } \\ & \text { actinoids } \end{aligned}$	rutherfordium -	105 Db dubnium -	106 Sg seaborgium -	$\begin{aligned} & \hline 107 \\ & \mathrm{Bh} \end{aligned}$ bohrium -	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$ hassium	109 Mt meitnerium	110 Ds darmstadtium -	111 Rg roentgenium -					116 $L V$ livermorium -		

lanthanoids
actinoids

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\underset{\text { lanthanum }}{\text { La }}$ 139	Ce cerium 140	Pr praseodymium 141	$\underset{\substack{\text { neodymium } \\ 144}}{\mathrm{Nd}}$ 144	Pm promethium	Sm samarium 150	Eu europium 152	Gd gadolinium 157	Tb terbium 159	$\underset{\substack{\text { dysprosium } \\ 163}}{\text { Dy }}$	Ho holmium 165	$\begin{gathered} \text { Er } \\ \text { erbium } \\ 167 \end{gathered}$	Tm thulium 169	Yb ytterbium 173	Lu lutetium 175
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac actinium	Th thorium 232	Pa protactinium 231	$\underset{\substack{\text { uranium } \\ 238}}{\bigcup}$	Np neptunium	Pu plutonium	Am americium	Cm curium	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr lawrencium

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

