Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/12
Paper 1 Multiple Choice
October/November 2016

Additional Materials:
Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.
Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 20.
Electronic calculators may be used.

1 What is respiration?
A breakdown of food by enzymes in the alimentary canal
B breathing to supply oxygen to cells
C release of carbon dioxide from cells
D release of energy for body activities

2 In some animals, their internal temperature varies with that of their surroundings.
Why does the metabolic activity of these animals slow down when it is cold?
A Enzyme activity is slow.
B Heart rate drops.
C The blood freezes.
D The absorption of food is slow.

3 What are the products when oil is digested?
A amino acids and glycerol
B fats and amino acids
C fatty acids and glycerol
D fatty acids and sugars

4 Why is calcium needed in the diet?
A to make carbohydrates
B to make teeth
C to make enzymes
D to make protein

5 Four leaves of similar size are taken from the same tree and weighed. Each is then treated as shown.

Which leaf loses mass fastest?
A

covered with petroleum jelly
B

in humid air
in the light
in front of
a fan

D

in a box
in the dark

6 The diagram shows a section through the human heart.

Which two blood vessels are arteries?
A 1 and 2
B 2 and 3
C 3 and 4
D 4 and 1

7 Two flasks are set up as shown. A student breathes out through tube X of flask 1. Another student breathes in through tube Y of flask 2.

flask 1

flask 2

The students obtain different results.
Which process in the student's body causes this?
A absorption
B assimilation
C digestion
D respiration

8 The diagram shows a neurone and associated structures.

What type of neurone is shown and in which direction do impulses travel?

	type of neurone	direction of impulse
A	motor	J to K
B	motor	K to J
C	sensory	J to K
D	sensory	K to J

9 What are the effects of adrenaline?

	blood glucose concentration	pulse rate
A	decreases	decreases
B	decreases	increases
C	increases	decreases
D	increases	increases

10 How many chromosomes are there in a zygote of an animal?
A half as many as in the egg
B same number as in the egg
C same number as in the sperm
D twice as many as in the sperm

11 Which structure protects a flower when it is in bud?
A petal
B sepal
C stamen
D stigma

12 The diagram shows a food chain.
Which organisms pass the greatest amount of energy along the food chain?

13 What is an undesirable effect of deforestation?
A It increases the oxygen concentration of the atmosphere.
B It leads to erosion and loss of soil.
C It makes land available for agriculture.
D It pollutes the air with methane.

14 Which dye, $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ or Z , is a mixture of only dyes P and Q ?

A W
B X
C Y
D Z

15 Which process is not a chemical change?
A the distillation of petroleum
B the electrolysis of molten lead bromide
C the rusting of iron
D the thermal decomposition of calcium carbonate

16 A model of a molecule is shown.
 key
〇 hydrogen atom

boron atom

Which row shows the formula of this molecule and describes the type of bonding between the atoms?

	formula	bonding
A	$2 \mathrm{BH}_{3}$	covalent
B	$2 \mathrm{BH}_{3}$	ionic
C	$\mathrm{B}_{2} \mathrm{H}_{6}$	covalent
D	$\mathrm{B}_{2} \mathrm{H}_{6}$	ionic

17 Which row describes the observations at the inert electrodes during the electrolysis of aqueous copper chloride?

	at the positive electrode	at the negative electrode
A	a colourless gas is given off a pale green gas is given off	a pink solid appears
B	a pink solid appears solid appears	a colourless gas is given off a pale green gas is given off
D	a pink solid appears	

18 Which type of reaction and which temperature change take place when an acid reacts with an alkali?

	type of reaction	temperature change
A	endothermic	decrease
B	endothermic	increase
C	exothermic	decrease
D	exothermic	increase

19 Solid calcium carbonate reacts with dilute hydrochloric acid to produce aqueous calcium chloride, carbon dioxide and water.

Which apparatus can be used with a stopwatch to measure the speed of this reaction?

1

2

3
A 1, 2 and 3
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only

20 Copper sulfate is made when copper carbonate is added to dilute sulfuric acid.
The copper carbonate is added until no more carbon dioxide is given off.
The mixture is \qquad 1. to remove excess copper carbonate.

The resulting solution is then \qquad 2. \qquad to decrease the volume.

This solution is then \qquad to allow the formation of pure copper sulfate crystals.

Which words complete gaps 1,2 and 3 ?

	1	2	3
A	boiled	heated	left to cool
B	filtered	cooled	left to cool
C	filtered	heated	evaporated to dryness
D	filtered	heated	left to cool

21 In which experiment does limewater become milky?
A

B

C

D

22 Which statement about lithium, sodium and potassium is not correct?
A They are in the same group of the Periodic Table.
B They are in the same period of the Periodic Table.
C They float on water.
D They react with water to give a flammable gas.

23 The properties of some substances are listed.
1 act as catalysts
2 have high melting points
3 form acidic oxides
4 form coloured compounds
What are the properties of transition metals?
A 1, 2 and 3
B 1, 2 and 4
C 1, 3 and 4
D 2, 3 and 4

24 Five metals are reacted with cold water and with dilute hydrochloric acid.
Some of the results are shown.

	cold water	dilute hydrochloric acid
calcium	rapid reaction	
copper		no observable change
iron		a few bubbles of gas
magnesium	a few bubbles of gas	many bubbles of gas
sodium	violent reaction	

What is the order of reactivity, from most to least reactive?
A copper \rightarrow calcium \rightarrow magnesium \rightarrow iron \rightarrow sodium
B copper \rightarrow iron \rightarrow magnesium \rightarrow calcium \rightarrow sodium
C sodium \rightarrow calcium \rightarrow magnesium \rightarrow iron \rightarrow copper
D sodium \rightarrow iron \rightarrow magnesium \rightarrow calcium \rightarrow copper

25 Which conditions are required for rusting?
A air only
B air and water
C salt and water
D water only

26 What is used to reduce the acidity of soil?
A fertiliser
B lime
C magnesium ions
D sand

27 Poly(ethene) is made from ethene by the process of addition polymerisation.
Which word describes ethene in this process?
A fuel
B monomer
C polymer
D solvent

28 The diagram shows two graphs. Graph 1 is a distance/time graph. Graph 2 is a speed/time graph.

Which graphs represent a car that accelerates and then travels at a constant speed?
A graph 1 and graph 2
B graph 1 only
C graph 2 only
D neither graph 1 nor graph 2

29 Four rectangular blocks P, Q, R and S are shown. Each block is labelled with its dimensions and its mass.

Which two blocks have the same density?
A P and Q
B P and R
C Q and R
D R and S

30 Which energy source is renewable?
A coal
B natural gas
C nuclear fission
D wind

31 When a liquid evaporates, molecules escape from the surface.
Which row shows which molecules escape and the average energy of the remaining molecules?

	molecules escaping	average energy of remaining molecules
A	the less energetic molecules	decreases
B	the less energetic molecules	stays the same
C	the more energetic molecules	decreases
D	the more energetic molecules	stays the same

32 Which labelled arrow on the diagram represents condensation?

33 How is thermal energy transferred in a vacuum?
A by conduction and convection
B by convection and radiation
C by convection only
D by radiation only

34 A water wave passes point Y .
A student counts how many wave crests pass point Y in 30 seconds.
Using only this information, what can the student calculate?
A the amplitude of the wave
B the frequency of the wave
C the speed of the wave
D the wavelength of the wave

35 The image formed by a plane mirror is upright.

What are the other characteristics of the image?

	magnified (larger than the object)	virtual
A	no	no
B	no	yes
C	yes	no
D	yes	yes

36 A sports field is next to a large school building. At the far side of the sports field, a student sees a groundsman hit a pole with a hammer.

After the hammer hits the pole, the student hears two bangs.
Why does the student hear two bangs?

	first bang caused by	second bang caused by
A	sound of hammer hitting pole	sound of pole hitting hammer
B	sound reaching the student's left ear	sound reaching the student's right ear
C	sound reaching student directly	sound reflected back from school building
D	sound due to an echo from school building	sound reaching student directly

37 The circuit shows a battery connected to two resistors in series.

The reading on the ammeter is 2.0 A and the reading on the voltmeter is 8.0 V .
What is the resistance of resistor R ?
A 0.25Ω
B 4.0Ω
C 10Ω
D 16Ω

38 The cables in a circuit can safely carry a maximum current of 4 A .
A 3A fuse and a 5A fuse are available for protection.
What is the purpose of the fuse and which fuse is suitable?

	purpose	suitable fuse
A	to prevent cables overheating	3 A
B	to prevent cables overheating	5 A
C	to prevent electric shock	3 A
D	to prevent electric shock	5 A

39 Which diagram shows the magnetic field pattern around a straight wire carrying a current?
B

D

40 The diagrams represent the nuclei of four different atoms $\mathrm{V}, \mathrm{W}, \mathrm{X}$ and Y .

X

key
(P) proton
(n) neutron

Which two diagrams represent isotopes of the same element?
A V and W
B W and X
C X and Y
D Y and V

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

©	The Periodic Table of Elements																	
$\frac{0}{m}$	Group																	
$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	I	II											III	IV	V	VI	VII	VIII
$\vec{\sigma}$					Key			1 H hydrogen 1										2 He helium 4
	$\begin{gathered} 3 \\ \mathrm{Li} \\ \substack{\text { lithium } \\ 7} \end{gathered}$	4 Be beryllium 9		ato re	mic num ic sy name ve atomic								$\begin{gathered} \hline 5 \\ \mathrm{~B} \\ \text { boron } \\ 11 \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{C} \\ \text { carbon } \\ 12 \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ \begin{array}{c} \text { nitrogen } \\ 14 \end{array} \end{gathered}$	$\begin{gathered} 8 \\ \mathrm{O} \\ \text { oxygen } \\ 16 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ \substack{\text { fluorine } \\ 19} \end{gathered}$	10 Ne neon 20
		12 Mg magnesium 24												$\begin{gathered} \hline 14 \\ \mathrm{Si} \\ \substack{\text { silicon } \\ 28} \end{gathered}$	15 P $\substack{\text { phosphorus } \\ 31}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ \substack{\text { sulfur } \\ 32} \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ \text { chlorine } \\ 35.5 \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ \text { argon } \\ 40 \end{gathered}$
	19 K potassium 39	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { calcium } \\ 40 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \substack{\text { scandium } \\ 45} \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \text { titanium } \\ 48 \end{gathered}$	23Vvanadium 51	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { chromium } \\ 52 \end{gathered}$	25 Mn manganese 55	$\begin{gathered} 26 \\ \text { Fe } \\ \text { iron } \\ 56 \end{gathered}$	$\begin{gathered} 27 \\ \text { co } \\ \text { cobat } \\ 5 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { nickel } \\ 59 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { copper } \\ 64 \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ \text { zinc } \\ 65 \end{gathered}$	31 Ga gallium 70	32 Ge germanium 73	33 As arsenic 75	34 Se selenium 79	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { bromine } \\ 80 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Krypton} \\ 84 \end{gathered}$
	37 Rb rubidium 85	38Srstrontium 88	$\begin{gathered} 39 \\ \mathrm{Y} \\ \text { yytrium } \\ 89 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { zirconium } \\ 91 \end{gathered}$	41 Nb niobium 93	42 Mo molybdenum 96	43 Tc technetium \qquad	$\underset{\substack{44 \\ \text { ruthenium } \\ 101}}{ }$	$\begin{gathered} 45 \\ \mathrm{Rh} \\ \text { rhodium } \\ 103 \end{gathered}$	46Pdpalladium 106	$\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { silver } \\ 108 \end{gathered}$	48 $\substack{\text { cadmium } \\ 112}$	$\begin{gathered} 49 \\ \text { In } \\ \text { indium } \\ 115 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ \begin{array}{c} \text { tin } \\ 119 \end{array} \end{gathered}$	$\substack{51 \\ \text { antimony } \\ 122}$ Sb^{2}	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { tellurium } \\ 128 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { iodine } \\ 127 \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ \text { xenon } \\ 131 \end{gathered}$
$\begin{aligned} & \stackrel{N}{O} \\ & \underset{\lambda}{\top} \end{aligned}$	$\begin{gathered} 55 \\ \mathrm{CS} \\ \text { caesium } \\ 133 \end{gathered}$	56 Ba barium 137	57-71 lanthanoids	$\begin{gathered} 72 \\ \mathrm{Hf} \\ \text { hafnium } \\ 178 \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ \substack{\text { tantalum } \\ 181} \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { tungsten } \\ 184 \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{Re} \\ \text { rhenium } \\ 186 \end{gathered}$	76 Os osmium 190	$\begin{gathered} \hline 77 \\ \mathrm{Ir} \\ \text { iridium } \\ 192 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { platinum } \\ 195 \end{gathered}$	79 Au gold 197	$\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { mercury } \\ 201 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{~T} l \\ \text { thallium } \\ 204 \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { lead } \\ 207 \\ \hline \end{gathered}$	83 Bi bismuth 209	84 Po polonium -	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$ astatine $-$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ \text { radon } \\ - \end{gathered}$
	87 Fr francium -	88 Ra radium -	$\begin{aligned} & \text { 89-103 } \\ & \text { actinoids } \end{aligned}$	rutherfordium -	105 Db dubnium -	106 Sg seaborgium -	$\begin{aligned} & \hline 107 \\ & \mathrm{Bh} \end{aligned}$ bohrium -	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$ hassium	109 Mt meitnerium	110 Ds darmstadtium -	111 Rg roentgenium -					116 $L V$ livermorium -		

lanthanoids
actinoids

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\underset{\text { lanthanum }}{\text { La }}$ 139	Ce cerium 140	Pr praseodymium 141	$\underset{\substack{\text { neodymium } \\ 144}}{\mathrm{Nd}}$ 144	Pm promethium	Sm samarium 150	Eu europium 152	Gd gadolinium 157	Tb terbium 159	$\underset{\substack{\text { dysprosium } \\ 163}}{\text { Dy }}$	Ho holmium 165	$\begin{aligned} & \text { Er } \\ & \text { erbium } \\ & 167 \end{aligned}$	Tm thulium 169	Yb ytterbium 173	Lu lutetium 175
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac actinium	Th thorium 232	Pa protactinium 231	$\underset{\substack{\text { uranium } \\ 238}}{\bigcup}$	Np neptunium	Pu plutonium	Am americium	Cm curium	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr lawrencium

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.)

