Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/13
Paper 1 Multiple Choice
October/November 2016
45 minutes
Additional Materials: Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 20.
Electronic calculators may be used.

1 The diagram shows a plant cell.

In which regions of the cell are the chloroplasts and nucleus found?

	chloroplasts	nucleus
A	X	X
B	X	Y
C	Y	X
D	Y	Y

2 The diagram shows how the rate of an enzyme-controlled reaction is affected by pH .

What is the optimum pH for this enzyme-controlled reaction?
A 6
B 6.5
C 7.5
D 9

3 Which result with the biuret test would show protein is present?
A blue
B green
C orange
D purple

4 The diagram shows a section through the human heart.

Which two blood vessels are arteries?
A 1 and 2
B 2 and 3
C 3 and 4
D 4 and 1

5 The diagram shows two stages in an experiment on water uptake in two shoots from the same plant. Both shoots are kept in the light for one hour.

What does the experiment show?
A Humidity affects the rate of water uptake.
B Light affects the rate of water uptake.
C Plants lose more water at higher temperatures.
D Plants take up water by their roots.

6 Limewater can be used to investigate a difference in the composition of inspired and expired air.
Which statement is correct?
A Expired air turns limewater milky because it contains less carbon dioxide.
B Expired air turns limewater milky because it contains more carbon dioxide.
C Inspired air turns limewater milky because it contains less oxygen.
D Inspired air turns limewater milky because it contains more oxygen.

7 What could be measured to determine the rate of aerobic respiration of a plant?
A the rate of production of alcohol in the dark
B the rate of production of carbon dioxide in the dark
C the rate of production of glucose in the light
D the rate of production of oxygen in the light

8 The diagram shows a neurone and associated structures.

What type of neurone is shown and in which direction do impulses travel?

	type of neurone	direction of impulse
A	motor	J to K
B	motor	K to J
C	sensory	J to K
D	sensory	K to J

9 What are the effects of adrenaline?

	blood glucose concentration	pulse rate
A	decreases	decreases
B	decreases	increases
C	increases	decreases
D	increases	increases

10 In a human female, where is the egg usually fertilised?
A ovary
B oviduct
C uterus
D vagina

11 Which aspect of human reproduction defines it as sexual reproduction?
A A man and woman must have sexual intercourse to produce a baby naturally.
B Genetic material from each parent combines to produce a zygote.
C Human babies are naturally fed on breast milk.
D Young women have menstrual periods when they are not pregnant.

12 The diagram shows a food chain.
Which organisms pass the greatest amount of energy along the food chain?

13 Which natural resource is renewable?
A coal
B natural gas
C oil
D wood

14 The diagram shows the chromatogram obtained from four different substances.
Which substance is pure?

15 Which statements about atomic structure are correct?
1 A neutron is a particle with negligible mass.
2 The nucleus is at the centre of the atom and contains only protons and neutrons.
3 The nucleon number is the total number of protons and neutrons in an atom.
A 1 and 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3

16 A model of a molecule is shown.

key
\bigcirc hydrogen atom
boron atom

Which row shows the formula of this molecule and describes the type of bonding between the atoms?

	formula	bonding
A	$2 \mathrm{BH}_{3}$	covalent
B	$2 \mathrm{BH}_{3}$	ionic
C	$\mathrm{B}_{2} \mathrm{H}_{6}$	covalent
D	$\mathrm{B}_{2} \mathrm{H}_{6}$	ionic

17 Which word equation represents a redox reaction?
A carbon + copper oxide \rightarrow copper + carbon dioxide
B hydrochloric acid + potassium hydroxide \rightarrow potassium chloride + water
C magnesium carbonate \rightarrow magnesium oxide + carbon dioxide
D sodium sulfate + barium nitrate \rightarrow barium sulfate + sodium nitrate

18 Which type of reaction and which temperature change take place when an acid reacts with an alkali?

	type of reaction	temperature change
A	endothermic	decrease
B	endothermic	increase
C	exothermic	decrease
D	exothermic	increase

19 Which products are formed when dilute sulfuric acid is electrolysed using inert electrodes?
A hydrogen and oxygen
B hydrogen and sulfur
C hydrogen and sulfur dioxide
D oxygen and sulfur dioxide

20 A piece of magnesium ribbon is placed in dilute hydrochloric acid.
The magnesium reacts and bubbles of a colourless gas are formed.
What is the word equation for this reaction?
A magnesium + hydrochloric acid \rightarrow magnesium chloride + carbon dioxide
B magnesium + hydrochloric acid \rightarrow magnesium chloride + carbon dioxide + water
C magnesium + hydrochloric acid \rightarrow magnesium chloride + hydrogen
D magnesium + hydrochloric acid \rightarrow magnesium chloride + hydrogen + water

21 In which experiment does limewater become milky?
A

B

C

D

22 Which statement about lithium, sodium and potassium is not correct?
A They are in the same group of the Periodic Table.
B They are in the same period of the Periodic Table.
C They float on water.
D They react with water to give a flammable gas.

23 Part of the Periodic Table is shown.
The letters are not the symbols of the elements.
Which element is used to fill balloons?
A

24 A student reacts five metals with cold water and with dilute hydrochloric acid. The student measures the volumes of gas produced in one minute.

The results are shown.

metal	volume of gas in cold water $/ \mathrm{cm}^{3}$	volume of gas in dilute hydrochloric acid $/ \mathrm{cm}^{3}$
magnesium	2	15
zinc	0	8
calcium	18	25
iron	0	4
copper	0	0

What is the order of reactivity from most reactive to least reactive?
A calcium \rightarrow magnesium \rightarrow zinc \rightarrow copper \rightarrow iron
B calcium \rightarrow magnesium \rightarrow zinc \rightarrow iron \rightarrow copper
C magnesium \rightarrow calcium \rightarrow zinc \rightarrow iron \rightarrow copper
D zinc \rightarrow calcium \rightarrow magnesium \rightarrow iron \rightarrow copper

25 Which conditions are required for rusting?
A air only
B air and water
C salt and water
D water only

26 Lime is manufactured from limestone.

$$
\text { limestone } \rightarrow \text { lime }+ \text { carbon dioxide }
$$

The limestone undergoes \qquad 1...... during the reaction.

The chemical name for lime is \qquad 2.

Lime is used to treat \qquad 3. industrial waste.

Which words complete gaps 1, 2 and 3 ?

	1	2	3
A	reduction	calcium oxide	acidic
B	thermal decomposition	calcium carbonate	acidic
C	thermal decomposition	calcium oxide	acidic
D	thermal decomposition	calcium oxide	basic

27 Which structure represents an unsaturated hydrocarbon?
A

B

28 The diagram shows the speed/time graph for a train as it travels along a track.

For which part of the graph is the train's speed changing at the greatest rate?
A PQ
B QR
C RS
D ST

29 The diagram shows the dimensions of a block of wood of density $500 \mathrm{~kg} / \mathrm{m}^{3}$.

What is the mass of the block?
A 30 kg
B 60 kg
C $\quad 75 \mathrm{~kg}$
D $\quad 100 \mathrm{~kg}$

30 The diagram shows the main parts of a hydroelectric power station. Electricity is generated from energy stored by the water.

Which form of energy decreases as the electricity is generated?
A chemical
B gravitational
C nuclear
D thermal

31 The diagram shows a bridge on a cold day. The bridge has been built with a small gap at one end.

On a warmer day, the bridge changes size and the gap changes size.
What happens to the size of the bridge, and what happens to the size of the gap?

	bridge	gap
A	becomes bigger	becomes bigger
B	becomes bigger	becomes smaller
C	becomes smaller	becomes bigger
D	becomes smaller	becomes smaller

32 How is thermal energy transferred in a vacuum?
A by conduction and convection
B by convection and radiation
C by convection only
D by radiation only

33 A water wave passes point Y .
A student counts how many wave crests pass point Y in 30 seconds.
Using only this information, what can the student calculate?
A the amplitude of the wave
B the frequency of the wave
C the speed of the wave
D the wavelength of the wave

34 A converging lens in a projector is used to make an enlarged (magnified) image of an object on a screen.

At which labelled point could the object be placed so that the lens produces this image?

35 Electromagnetic waves are used to cook food under a grill. Electromagnetic waves are also used to send telephone messages over large distances.

Which type of electromagnetic wave is used for each of these two purposes?

	cooking food under a grill	sending telephone messages
A	infra-red waves	infra-red waves
B	infra-red waves	microwaves
C	microwaves	infra-red waves
D	microwaves	microwaves

36 What is the range of frequencies a typical person can hear?
A $20 \mathrm{~Hz}-2000 \mathrm{~Hz}$
B $20 \mathrm{~Hz}-20000 \mathrm{~Hz}$
C $200 \mathrm{~Hz}-2000 \mathrm{~Hz}$
D $200 \mathrm{~Hz}-20000 \mathrm{~Hz}$

37 The diagram shows a battery connected to a 0.50Ω resistor and an ammeter. The reading on the ammeter is 0.20 A .

What is the p.d. across the resistor?
A 0.10 V
B 0.40 V
C 0.70 V
D 2.5 V

38 Three resistors are connected in series with a battery, as shown in the diagram.

The current at point \mathbf{P} is 6.0 A .
What is the current at point \mathbf{Q} ?
A 0 A
B $\quad 2.0 \mathrm{~A}$
C $\quad 3.0 \mathrm{~A}$
D $\quad 6.0 \mathrm{~A}$

39 Which diagram shows the magnetic field pattern around a straight wire carrying a current?

A

B

C
D

40 The diagrams represent the nuclei of four different atoms $\mathrm{V}, \mathrm{W}, \mathrm{X}$ and Y .

Which two diagrams represent isotopes of the same element?
A V and W
B W and X
C X and Y
D Y and V

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

©	The Periodic Table of Elements																	
$\frac{0}{0}$	Group																	
$\begin{aligned} & 0 \\ & N \\ & 0 \end{aligned}$	I	II											III	IV	V	VI	VII	VIII
の					Key			1 H hydrogen 1										$\begin{gathered} 2 \\ \mathrm{He} \\ \text { helium } \\ 4 \end{gathered}$
	$\begin{gathered} 3 \\ \substack{\text { lithium } \\ 7} \end{gathered}$	4 Be beryllium 9			omic num nic sym name ve atomic								$\begin{gathered} 5 \\ \mathrm{~B} \\ \text { boron } \\ 11 \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{C} \\ \text { carbon } \\ 12 \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ \substack{\text { nitrogen } \\ 14} \end{gathered}$	$\begin{gathered} 8 \\ \mathrm{O} \\ \text { oxygen } \\ 16 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ \text { fluorine } \\ 19 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ \text { neon } \\ 20 \end{gathered}$
		$\underset{\substack{\text { magnesium } \\ 24}}{\mathbf{M g}}$											$\underset{\substack{13 \\ \mathrm{Aluminium} \\ 27}}{\mathrm{Al}}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { silicon } \\ 28 \end{gathered}$	15 P $\substack{\text { phosphorus } \\ 31}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ \text { sulfur } \\ 32 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ \text { chlorine } \\ 35.5 \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ \text { argon } \\ 40 \end{gathered}$
	19 K potassium 39 37	$\begin{gathered} 20 \\ \text { Ca } \\ \text { calcium } \\ 40 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \substack{\text { scandium } \\ 45} \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \text { titanium } \\ 48 \end{gathered}$	23Vvanadium 51	24 Cr chromium 52	25 Mn manganese 55	$\begin{gathered} 26 \\ \text { Fe } \\ \text { iron } \\ 56 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { cobalt } \\ 59 \end{gathered}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { nickel } \\ 59 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { copper } \\ 64 \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ \text { zinc } \\ 65 \end{gathered}$	31 Ga gallium 70		$\begin{gathered} 33 \\ \text { As } \\ \text { arsenic } \\ 75 \end{gathered}$	34 Se selenium 79	35 Br bromine 80	$\begin{gathered} 36 \\ \mathrm{Kr} \\ \text { krypton } \\ 84 \end{gathered}$
$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \\ & \stackrel{1}{\triangle} \end{aligned}$	37 Rb rubidium 85	38 Sr $\substack{38 \\ \text { strontium } \\ 88}$	$\begin{gathered} 39 \\ Y \\ \text { yttrium } \\ 89 \end{gathered}$	40 Zr zirconium 91	$\begin{gathered} 41 \\ \mathrm{Nb} \\ \text { niobium } \\ 93 \end{gathered}$	42Momolybdenum 96	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$ technetium \qquad		$\begin{gathered} 45 \\ \mathrm{Rh} \\ \text { rhodium } \\ 103 \end{gathered}$	46Pdpalladium 106	$\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { silver } \\ 108 \end{gathered}$	48 Cd cadmium 112	$\begin{gathered} 49 \\ \text { In } \\ \text { indium } \\ 115 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ \text { Sin } \\ 119 \end{gathered}$	$\begin{gathered} 51 \\ \mathrm{Sb} \\ \substack{\text { antimony } \\ 122} \end{gathered}$	52 Te tellurium 128	$\begin{gathered} 53 \\ \text { I } \\ \text { iodine } \\ 127 \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ \text { xenon } \\ 131 \end{gathered}$
$\begin{aligned} & \stackrel{\omega}{o} \\ & \underset{\rightharpoonup}{¿} \\ & \hline \end{aligned}$	55 Cassum casium 133	$\begin{gathered} 56 \\ \mathrm{Ba} \\ \text { barium } \\ 137 \end{gathered}$	$\begin{gathered} 57-71 \\ \text { lanthanoids } \end{gathered}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ \text { hafnium } \\ 178 \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ \substack{\text { tantalum } \\ 181} \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { tungsten } \\ 184 \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{Re} \\ \text { rhenium } \\ 186 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ \substack{\text { osmium } \\ 190} \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ \text { iridium } \\ 192 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { platinum } \\ 195 \end{gathered}$	79 Au gold 197	$\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { mercury } \\ 201 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{~T} l \\ \text { thallium } \\ 204 \end{gathered}$	$\begin{gathered} \hline 82 \\ \mathrm{~Pb} \\ \text { lead } \\ 207 \end{gathered}$	83 Bi bismuth 209	84 Po polonium \qquad	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$ astatine $-$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ \text { radon } \\ - \end{gathered}$
	87 Fr francium -	88 Ra radium -	$\begin{aligned} & \text { 89-103 } \\ & \text { actinoids } \end{aligned}$	104 Rf rutherfordium -	105 Db dubnium -	106 Sg seaborgium -	$\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$ bohrium -	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$ hassium	109 Meitnerium _	110 Ds darmstadtium -	$\underset{\substack{\text { roentgenium } \\-\mathrm{Rg}}}{111}$	$\begin{aligned} & 112 \\ & \mathrm{Cn} \end{aligned}$ copernicium		$\begin{gathered} 114 \\ \mathrm{Fl} \end{gathered}$ flerovium -		116 $L V$ livermorium -		

lanthanoids
actinoids

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\begin{gathered} \text { La } \\ \substack{\text { lanthanum } \\ 139} \end{gathered}$	Ce cerium 140	$\underset{\substack{\text { praseodymium } \\ 141}}{\mathrm{Pr}}$	$\underset{\text { neodymium }}{\mathrm{Nd}}$ 144	Pm promethium	Sm samarium 150	Eu europium 152	Gd gadolinium 157	Tb terbium 159	$\begin{gathered} \text { Dy } \\ \text { dysprosium } \\ 163 \end{gathered}$	Ho holmium 165	$\begin{gathered} \text { Er } \\ \text { erbium } \\ 167 \end{gathered}$	Tm thulium 169	Yb ytterbium 173	Lu lutetium 175
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac actinium -	Th thorium 232	Pa protactinium 231	$\underset{\substack{\text { uranium } \\ 238}}{\text { U }}$	Np neptunium	Pu plutonium	Am americium	Cm curium	Bk berkelium	Cf californium	Es einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr lawrencium

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.)

